М. Н. ПРОХОРОВ, С. В. КОСТИН

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ТИПОВОЙ РАСЧЕТ

 $(2012/2013 \ {
m y}$ чебный год) $({
m oce}$ ний семестр)

 $\begin{array}{c} \text{MOCKBA} \\ 2012 \end{array}$

(1-й курс, 1-й семестр) (2012/2013 учебный год)

Типовой расчет

Вариант 1

Задача 1. Даны точки A, B, C, D:

$$A = \langle 1, 0, -1 \rangle, \quad B = \langle 0, 2, -3 \rangle, \quad C = \langle 2, 4, -2 \rangle, \quad D = \langle -2, 6, 2 \rangle.$$

- 1) Найти объем V_{ABCD} пирамиды ABCD.
- 2) Найти площадь S_{ABC} грани ABC.
- 3) Найти уравнение прямой AB (прямая L).
- 4) Найти длину ребра AB.
- 5) Найти уравнение плоскости ABC (плоскость Q).
- 6) Найти проекцию D_1 точки D на плоскость ABC.

Задача 2. Дана точка P и дана прямая L:

$$P = \langle 3, 4, 0 \rangle, \quad L = \left\{ \frac{x-2}{1} = \frac{y+1}{2} = \frac{z+1}{3} \right\}.$$

Найти уравнение плоскости Q, проходящей через точку P и через прямую L.

Задача 3. Даны прямые L_1 и L_2 :

$$L_1 = \left\{ \frac{x-2}{1} = \frac{y+1}{2} = \frac{z+3}{2} \right\}, \quad L_2 = \left\{ 4x - y - z - 4 = 0, \ 2x - y - 1 = 0 \right\}.$$

- 1) Доказать, что прямые L_1 и L_2 параллельны.
- 2) Найти расстояние $d(L_1, L_2)$ между прямыми L_1 и L_2 .

Задача 4. Дана прямая L и дана плоскость Q:

$$L = \{x + z - 1 = 0, y - 2 = 0\}, Q = \{y - z = 0\}.$$

- 1) Найти точку P пересечения прямой L и плоскости Q.
- 2) Найти угол $\angle(L, Q)$ между прямой L и плоскостью Q.

Задача 5. Дана точка A и дано геометрическое место точек M:

$$A=\left<3,\;-5,\;7\right>,\quad M=\{P\in\Omega\;|\;$$
точка P является серединой

некоторого отрезка AB, конец B которого лежит в координатной плоскости $Oxy\}.$ Найти уравнение ГМТ M.

$$r = \frac{5}{1 - \frac{1}{2}\cos\varphi}.$$

Определить тип кривой Γ .

Задача 7. Даны точки P_1, P_2 и дана поверхность второго порядка Σ :

$$P_1 = \langle 1, -1, 1 \rangle, \quad P_2 = \langle 3, 1, 1 \rangle,$$

$$\Sigma = \{(x-1)^2 + (y+1)^2 + 2z^2 = 4\}.$$

- 1) Определить тип поверхности Σ .
- 2) Изобразить схематически поверхность Σ .
- 3) Изобразить сечения поверхности Σ координатными плоскостями, по возможности соблюдая масштаб. Найти фокусы и асимптоты полученных кривых.
- 4) Определить, по одну или по разные стороны от поверхности Σ лежат точки P_1 и P_2 .
- 5) Определить, сколько точек пересечения с поверхностью Σ имеет прямая, проходящая через точки P_1 и P_2 (прямая L).

Задача 8. Дана точка S и дана сфера Σ :

$$S = \langle 5, 0, 0 \rangle, \quad \Sigma = \{x^2 + y^2 + z^2 = 9\}.$$

Найти уравнение конической поверхности Σ_1 , вершина которой находится в точке S, а образующие касаются сферы Σ .

Замечание 1. Везде, где сказано найти уравнение плоскости, надо найти общее уравнение плоскости.

(1-й курс, 1-й семестр) (2012/2013 учебный год)

Типовой расчет

Вариант 2

Задача 1. Даны точки A, B, C, D:

$$A = \langle 3, 1, 1 \rangle$$
, $B = \langle 1, 3, 1 \rangle$, $C = \langle 1, 1, 3 \rangle$, $D = \langle 1, 2, 3 \rangle$.

- 1) Найти объем V_{ABCD} пирамиды ABCD.
- 2) Найти площадь S_{ABC} грани ABC.
- 3) Найти уравнение прямой AB (прямая L).
- 4) Найти длину ребра AB.
- 5) Найти уравнение плоскости ABC (плоскость Q).
- 6) Найти проекцию D_1 точки D на прямую AC (прямая L_1).

Задача 2. Даны точки P_1 , P_2 и дана прямая L:

$$P_1 = \langle 2, 1, 5 \rangle, \quad P_2 = \langle 1, 2, 5 \rangle, \quad L = \left\{ \frac{x+1}{1} = \frac{y-3}{0} = \frac{z+4}{0} \right\}.$$

Найти уравнение плоскости Q, проходящей через точки P_1 и P_2 и образующей угол 45° с прямой L.

Задача 3. Дана точка P и дана прямая L:

$$P = \langle -4, 3, 3 \rangle$$
, $L = \{x - 2y + z - 4 = 0, 2x + y - z = 0\}$.

Найти уравнение прямой L_1 , проходящей через точку P параллельно прямой L.

Задача 4. Даны прямые L_1 и L_2 :

$$L_1 = \left\{ \frac{x+3}{1} = \frac{y+1}{2} = \frac{z+1}{1} \right\}, \quad L_2 = \left\{ x - 3z + 4 = 0, \ y - z - 2 = 0 \right\}.$$

- 1) Доказать, что прямые L_1 и L_2 пересекаются.
- 2) Найти точку P пересечения прямых L_1 и L_2 .
- 3) Найти уравнение плоскости Q, проходящей через прямые L_1 и L_2 .

Задача 5. Дана точка A и дано геометрическое место точек M:

$$A=\langle -3,\ -5,\ 9 \rangle, \quad M=\{P\in\Omega\ |\ \text{точка}\ P$$
 является серединой

некоторого отрезка AB, конец B которого лежит в координатной плоскости Oyz }.

$$r = \frac{5}{1 - \cos \varphi}.$$

Определить тип кривой Γ .

Задача 7. Даны точки $P_1,\,P_2$ и дана поверхность второго порядка Σ :

$$P_1 = \langle 0, 0, 1 \rangle, \quad P_2 = \langle -1, -2, -2 \rangle,$$

$$\Sigma = \{2(z+1) = 2x^2 + y^2\}.$$

- 1) Определить тип поверхности Σ .
- 2) Изобразить схематически поверхность Σ .
- 3) Изобразить сечения поверхности Σ координатными плоскостями, по возможности соблюдая масштаб. Найти фокусы и асимптоты полученных кривых.
- 4) Определить, по одну или по разные стороны от поверхности Σ лежат точки P_1 и P_2 .
- 5) Определить, сколько точек пересечения с поверхностью Σ имеет прямая, проходящая через точки P_1 и P_2 (прямая L).

Задача 8. Дана сфера Σ :

$$\Sigma = \{(x+2)^2 + (y-1)^2 + (z-3)^2 = 9\}.$$

Найти уравнение конической поверхности Σ_1 , вершина которой находится в начале координат O, а образующие касаются сферы Σ .

Замечание 1. Везде, где сказано найти уравнение плоскости, надо найти общее уравнение плоскости.

(1-й курс, 1-й семестр) (2012/2013 учебный год)

Типовой расчет

Вариант 3

Задача 1. Даны точки A, B, C, D:

$$A = \langle -1, 0, -4 \rangle, \quad B = \langle 1, 2, -3 \rangle, \quad C = \langle 1, 8, -6 \rangle, \quad D = \langle -5, -3, 7 \rangle.$$

- 1) Найти объем V_{ABCD} пирамиды ABCD.
- 2) Найти площадь S_{ABC} грани ABC.
- 3) Найти уравнение прямой AB (прямая L).
- 4) Найти длину ребра AB.
- 5) Найти уравнение плоскости ABC (плоскость Q).
- 6) Найти точку D_1 , симметричную точке D относительно плоскости ABC.

Задача 2. Дана точка P и даны прямые L_1 и L_2 :

$$P = \langle 1, 1, 2 \rangle, \quad L_1 = \left\{ \frac{x-1}{2} = \frac{y}{3} = \frac{z+1}{4} \right\}, \quad L_2 = \left\{ \frac{x-2}{3} = \frac{y-1}{4} = \frac{z}{1} \right\}.$$

Найти уравнение плоскости Q, проходящей через точку P параллельно прямым L_1 и L_2 .

Задача 3. Дана точка P и даны плоскости Q_1 и Q_2 :

$$P = \langle 0, 2, 1 \rangle$$
, $Q_1 = \{x - 2y = 0\}$, $Q_2 = \{x - 2y + 2z = 0\}$.

Найти уравнение прямой L, которая проходит через точку P параллельно плоскости Q_1 и образует угол 60° с плоскостью Q_2 .

Задача 4. Даны точки P_1 , P_2 , P_3 и дана прямая L:

$$P_1 = \langle 1, 0, 0 \rangle, \quad P_2 = \langle 1, 1, 2 \rangle, \quad P_3 = \langle 0, 1, 5 \rangle,$$

$$L = \{x = 2t - 1, y = t + 2, z = -t + 1\}.$$

- 1) Найти уравнение плоскости Q, проходящей через точки P_1, P_2, P_3 .
- 2) Найти точку P пересечения прямой L и плоскости Q.
- 3) Найти угол $\angle(L, Q)$ между прямой L и плоскостью Q.

Задача 5. Даны точки A, B и дано геометрическое место точек M:

$$A = \langle 2, 3, -5 \rangle, \quad B = \langle 2, -7, -5 \rangle, \quad M = \{ P \in \Omega \mid AP^2 - BP^2 = 13 \}.$$

$$r = \frac{10}{1 - \frac{3}{2}\cos\varphi}.$$

Определить тип кривой Γ .

Задача 7. Даны точки P_1, P_2 и дана поверхность второго порядка Σ :

$$P_1 = \langle 1, 2, 0 \rangle, \quad P_2 = \langle -1, 3, 0 \rangle,$$

$$\Sigma = \left\{ \frac{(x-1)^2}{2} + y^2 - \frac{z^2}{4} = 0 \right\}.$$

- 1) Определить тип поверхности Σ .
- 2) Изобразить схематически поверхность Σ .
- 3) Изобразить сечения поверхности Σ координатными плоскостями, по возможности соблюдая масштаб. Найти фокусы и асимптоты полученных кривых.
- 4) Определить, по одну или по разные стороны от поверхности Σ лежат точки P_1 и P_2 .
- 5) Определить, сколько точек пересечения с поверхностью Σ имеет прямая, проходящая через точки P_1 и P_2 (прямая L).

Задача 8. Дана точка S и дан эллипсоид Σ :

$$S = \langle 3, 0, -1 \rangle, \quad \Sigma = \left\{ \frac{x^2}{6} + \frac{y^2}{2} + \frac{z^2}{3} = 1 \right\}.$$

Найти уравнение конической поверхности Σ_1 , вершина которой находится в точке S, а образующие касаются эллипсоида Σ .

Замечание 1. Везде, где сказано найти уравнение плоскости, надо найти общее уравнение плоскости.

(1-й курс, 1-й семестр) (2012/2013 учебный год)

Типовой расчет

Вариант 4

Задача 1. Даны точки A, B, C, D:

$$A = \langle 3, 2, 2 \rangle$$
, $B = \langle 2, 2, 3 \rangle$, $C = \langle 2, 3, 2 \rangle$, $D = \langle 2, 2, 2 \rangle$.

- 1) Найти объем V_{ABCD} пирамиды ABCD.
- 2) Найти площадь S_{ABC} грани ABC.
- 3) Найти уравнение прямой AB (прямая L).
- 4) Найти длину ребра AB.
- 5) Найти уравнение плоскости ABC (плоскость Q).
- 6) Найти точку D_1 , симметричную точке D относительно прямой AC (прямая L_1).

Задача 2. Даны точки P_1 , P_2 и дана плоскость Q:

$$P_1 = \langle -1, -2, 0 \rangle, \quad P_2 = \langle 1, 1, 2 \rangle, \quad Q = \{x + 2y + 2z - 4 = 0\}.$$

Найти уравнение плоскости Q_1 , проходящей через точки P_1 и P_2 перпендикулярно плоскости Q.

Задача 3. Даны точки P_1 , P_2 и дана плоскость Q:

$$P_1 = \langle 0, 0, 4 \rangle, \quad P_2 = \langle 2, 2, 0 \rangle, \quad Q = \{x + y - z = 0\}.$$

- 1) Найти уравнение прямой L, проходящей через точки P_1 и P_2 .
- 2) Найти точку P пересечения прямой L и плоскости Q.
- 3) Найти угол $\angle(L, Q)$ между прямой L и плоскостью Q.

Задача 4. Дана точка P и даны плоскости Q_1, Q_2 :

$$P = \langle -4, 3, 0 \rangle$$
, $Q_1 = \{x - 2y + z = 0\}$, $Q_2 = \{2x + y - z = 0\}$.

Найти уравнение прямой L, проходящей через точку P параллельно плоскостям Q_1 и Q_2 .

Задача 5. Даны точки A, B и дано геометрическое место точек M:

$$A = \langle -1, 0, 0 \rangle, \quad B = \langle 1, 0, 0 \rangle, \quad M = \{ P \in \Omega \mid AP^2 + BP^2 = 4 \}.$$

$$r = \frac{12}{2 - \cos \varphi}.$$

Определить тип кривой Γ .

Задача 7. Даны точки $P_1,\,P_2$ и дана поверхность второго порядка Σ :

$$P_1 = \langle 1, 0, 0 \rangle, P_2 = \langle 3, 1, 1 \rangle,$$

$$\Sigma = \{9(x-1)^2 + 4y^2 - 36z^2 = 36\}.$$

- 1) Определить тип поверхности Σ .
- 2) Изобразить схематически поверхность Σ .
- 3) Изобразить сечения поверхности Σ координатными плоскостями, по возможности соблюдая масштаб. Найти фокусы и асимптоты полученных кривых.
- 4) Определить, по одну или по разные стороны от поверхности Σ лежат точки P_1 и P_2 .
- 5) Определить, сколько точек пересечения с поверхностью Σ имеет прямая, проходящая через точки P_1 и P_2 (прямая L).

Задача 8. Дан вектор a и дана окружность Γ :

$$a = \langle 2, -3, 4 \rangle, \quad \Gamma = \{x^2 + y^2 = 9, z = 1\}.$$

Найти уравнение цилиндрической поверхности Σ , образующие которой параллельны вектору a, а направляющей служит окружность Γ .

Замечание 1. Везде, где сказано найти уравнение плоскости, надо найти общее уравнение плоскости.

(1-й курс, 1-й семестр) (2012/2013 учебный год)

Типовой расчет

Вариант 5

Задача 1. Даны точки A, B, C, D:

$$A = \langle 1, 2, -3 \rangle, \quad B = \langle 5, 1, -2 \rangle, \quad C = \langle 2, -2, -2 \rangle, \quad D = \langle 2, 2, 8 \rangle.$$

- 1) Найти объем V_{ABCD} пирамиды ABCD.
- 2) Найти площадь S_{ABC} грани ABC.
- 3) Найти уравнение прямой AB (прямая L).
- 4) Найти длину ребра AB.
- 5) Найти уравнение плоскости ABC (плоскость Q).
- 6) Найти уравнение прямой L_2 , симметричной прямой AD (прямая L_1) относительно плоскости ABC.

Задача 2. Дана точка P и даны плоскости Q_1, Q_2 :

$$P = \langle -1, -1, 2 \rangle$$
, $Q_1 = \{x - 2y + z - 4 = 0\}$, $Q_2 = \{x + 2y - 2z + 4 = 0\}$.

Найти уравнение плоскости Q, проходящей через точку P перпендикулярно плоскостям Q_1 и Q_2 .

Задача 3. Даны прямые L_1 и L_2 :

$$L_1 = \{2x - y - 7 = 0, 2x - z + 5 = 0\}, L_2 = \{3x - 2y + 8 = 0, 3x - z = 0\}.$$

- 1) Доказать, что прямые L_1 и L_2 скрещиваются.
- 2) Найти угол $\angle(L_1, L_2)$ между прямыми L_1 и L_2 .

Задача 4. Дана прямая L и дана плоскость Q:

$$L = \left\{ \frac{x+1}{2} = \frac{y+1}{-1} = \frac{z-3}{3} \right\}, \quad Q = \{2x + y - z = 0\}.$$

- 1) Доказать, что прямая L параллельна плоскости Q.
- 2) Найти расстояние d(L, Q) между прямой L и плоскостью Q.

Задача 5. Пусть Σ — куб, центр которого находится в начале координат O, грани параллельны координатным плоскостям, а длина ребра равна 2. Дано геометрическое место точек M:

$$M = \{ P \in \Omega \mid \text{сумма квадратов расстояний от точки } P$$
 до плоскостей граней куба Σ равна $8 \}.$

$$r = \frac{5}{3 - 4\cos\varphi}.$$

Определить тип кривой Γ .

Задача 7. Даны точки P_1, P_2 и дана поверхность второго порядка Σ :

$$P_1 = \langle 0, 0, 2 \rangle, \quad P_2 = \langle 0, -1, 2 \rangle,$$

$$\Sigma = \{x^2 + (y+1)^2 + 2z^2 = 4\}.$$

- 1) Определить тип поверхности Σ .
- 2) Изобразить схематически поверхность Σ .
- 3) Изобразить сечения поверхности Σ координатными плоскостями, по возможности соблюдая масштаб. Найти фокусы и асимптоты полученных кривых.
- 4) Определить, по одну или по разные стороны от поверхности Σ лежат точки P_1 и P_2 .
- 5) Определить, сколько точек пересечения с поверхностью Σ имеет прямая, проходящая через точки P_1 и P_2 (прямая L).

Задача 8. Дана плоскость Q и дана поверхность Σ :

$$Q = \{x + y + z = 0\}, \quad \Sigma = \{x^2 - y^2 = z\}.$$

Найти уравнение цилиндрической поверхности Σ_1 , образующие которой перпендикулярны плоскости Q, а направляющей служит кривая $\Gamma = \Sigma \cap Q$.

Замечание 1. Везде, где сказано найти уравнение плоскости, надо найти общее уравнение плоскости.

(1-й курс, 1-й семестр) (2012/2013 учебный год)

Типовой расчет

Вариант 6

Задача 1. Даны точки A, B, C, D:

$$A = \langle -3, 2, 0 \rangle$$
, $B = \langle 1, 1, 1 \rangle$, $C = \langle 4, 4, 1 \rangle$, $D = \langle 4, 1, 7 \rangle$.

- 1) Найти объем V_{ABCD} пирамиды ABCD.
- 2) Найти площадь S_{ABC} грани ABC.
- 3) Найти уравнение прямой AB (прямая L).
- 4) Найти длину ребра AB.
- 5) Найти уравнение плоскости ABC (плоскость Q).
- 6) Найти проекцию L_2 прямой AD (прямая L_1) на плоскость ABC.

Задача 2. Даны прямые L_1, L_2 :

$$L_1 = \left\{ \frac{x-1}{3} = \frac{y}{4} = \frac{z+1}{2} \right\}, \quad L_2 = \left\{ \frac{x-1}{6} = \frac{y-1/2}{5} = \frac{z-1}{0} \right\}.$$

Найти уравнение плоскости Q, проходящей через прямую L_1 параллельно прямой L_2 .

Задача 3. Даны плоскости Q_1, Q_2, Q_3 :

$$Q_1 = \{3x - 4y = 0\}, \quad Q_2 = \{y = 0\}, \quad Q_3 = \{z = 0\}.$$

Найти уравнение прямой L, проходящей через начало координат O и образующей одинаковые углы с плоскостями Q_1, Q_2 и Q_3 .

Задача 4. Дана точка P и дана прямая L:

$$P = \langle -1, 2, -3 \rangle, \quad L = \{x - 2 = 0, y - z - 1 = 0\}.$$

- 1) Найти уравнение плоскости Q, проходящей через точку P перпендикулярно прямой L.
- 2) Найти точку P_1 пересечения прямой L и плоскости Q.

Задача 5. Даны точки A, B и дано геометрическое место точек M:

$$A = \langle 1, 2, -3 \rangle, \quad B = \langle 3, 2, 1 \rangle, \quad M = \{P \in \Omega \mid AP = BP\}.$$

$$r = \frac{1}{3 - 3\cos\varphi}.$$

Определить тип кривой Γ .

Задача 7. Даны точки $P_1,\,P_2$ и дана поверхность второго порядка Σ :

$$P_1 = \langle 0, 2, 0 \rangle, \quad P_2 = \langle 0, 0, 2 \rangle,$$

$$\Sigma = \{2(1-z) = 2x^2 + y^2\}.$$

- 1) Определить тип поверхности Σ .
- 2) Изобразить схематически поверхность Σ .
- 3) Изобразить сечения поверхности Σ координатными плоскостями, по возможности соблюдая масштаб. Найти фокусы и асимптоты полученных кривых.
- 4) Определить, по одну или по разные стороны от поверхности Σ лежат точки P_1 и P_2 .
- 5) Определить, сколько точек пересечения с поверхностью Σ имеет прямая, проходящая через точки P_1 и P_2 (прямая L).

Задача 8. Дана плоскость Q и дана сфера Σ :

$$Q = \{x + y - 2z - 5 = 0\}, \quad \Sigma = \{x^2 + y^2 + z^2 = 1\}.$$

Найти уравнение цилиндрической поверхности Σ_1 , образующие которой перпендикулярны плоскости Q и касаются сферы Σ .

Замечание 1. Везде, где сказано найти уравнение плоскости, надо найти общее уравнение плоскости.

(1-й курс, 1-й семестр) (2012/2013 учебный год)

Типовой расчет

Вариант 7

Задача 1. Даны точки A, B, C, D:

$$A = \langle -1, 1, -1 \rangle$$
, $B = \langle 1, 3, 0 \rangle$, $C = \langle 0, -1, 1 \rangle$, $D = \langle 9, -3, -7 \rangle$.

- 1) Найти объем V_{ABCD} пирамиды ABCD.
- 2) Найти площадь S_{ABC} грани ABC.
- 3) Найти уравнение прямой AB (прямая L).
- 4) Найти длину ребра AB.
- 5) Найти уравнение плоскости ABC (плоскость Q).
- 6) Найти проекцию D_1 точки D на плоскость ABC.

Задача 2. Дана точка P и даны плоскости Q_1, Q_2 :

$$P = \langle 1, 1, 1 \rangle$$
, $Q_1 = \{2x + 2y - z - 1 = 0\}$, $Q_2 = \{x - 2y + 2z + 3 = 0\}$.

Найти уравнение плоскости Q, проходящей через точку P и образующей угол 60° с плоскостями Q_1 и Q_2 .

Задача 3. Даны прямые L_1 , L_2 и дана плоскость Q:

$$L_1 = \left\{ \frac{x-2}{1} = \frac{y}{-2} = \frac{z}{0} \right\}, \quad L_2 = \{3x + 2y + z - 6 = 0, \ 2x + y + z - 4 = 0\},$$

$$Q = \{x + y + z - 3 = 0\}.$$

- 1) Найти точку P_1 пересечения прямой L_1 и плоскости Q.
- 2) Найти точку P_2 пересечения прямой L_2 и плоскости Q.
- 3) Найти уравнение прямой L, проходящей через точки P_1 и P_2 .

Задача 4. Дана точка P и дана прямая L:

$$P = \langle 3, 4, 0 \rangle$$
, $L = \{2x + y - z + 4 = 0, x + 2y + z = 0\}$.

Найти уравнение прямой L_1 , проходящей через точку P параллельно прямой L.

Задача 5. Даны точки A, B и дано геометрическое место точек M:

$$A = \langle 0, 0, -4 \rangle$$
, $B = \langle 0, 0, 4 \rangle$, $M = \{ P \in \Omega \mid AP + BP = 10 \}$.

$$r = \frac{144}{13 - 5\cos\varphi}.$$

Определить тип кривой Γ .

Задача 7. Даны точки $P_1,\,P_2$ и дана поверхность второго порядка Σ :

$$P_1 = \langle 0, 1, 0 \rangle, \quad P_2 = \langle -1, 3, 4 \rangle,$$

$$\Sigma = \{2x^2 + 4(y-1)^2 - z^2 = 0\}.$$

- 1) Определить тип поверхности Σ .
- 2) Изобразить схематически поверхность Σ .
- 3) Изобразить сечения поверхности Σ координатными плоскостями, по возможности соблюдая масштаб. Найти фокусы и асимптоты полученных кривых.
- 4) Определить, по одну или по разные стороны от поверхности Σ лежат точки P_1 и P_2 .
- 5) Определить, сколько точек пересечения с поверхностью Σ имеет прямая, проходящая через точки P_1 и P_2 (прямая L).

Задача 8. Дана прямая L и дана сфера Σ :

$$L = \{x = 2t - 3, y = -t + 7, z = -2t + 5\}, \quad \Sigma = \{x^2 + y^2 + z^2 = 1\}.$$

Найти уравнение цилиндрической поверхности Σ_1 , образующие которой параллельны прямой L и касаются сферы Σ .

Замечание 1. Везде, где сказано найти уравнение плоскости, надо найти общее уравнение плоскости.

(1-й курс, 1-й семестр) (2012/2013 учебный год)

Типовой расчет

Вариант 8

Задача 1. Даны точки A, B, C, D:

$$A = \langle 3, 2, 3 \rangle$$
, $B = \langle 1, 4, 3 \rangle$, $C = \langle 1, 2, 5 \rangle$, $D = \langle 1, 2, 3 \rangle$.

- 1) Найти объем V_{ABCD} пирамиды ABCD.
- 2) Найти площадь S_{ABC} грани ABC.
- 3) Найти уравнение прямой AB (прямая L).
- 4) Найти длину ребра AB.
- 5) Найти уравнение плоскости ABC (плоскость Q).
- 6) Найти проекцию D_1 точки D на прямую AC (прямая L_1).

Задача 2. Дана точка P:

$$P = \langle 2, 3, -4 \rangle$$
.

Найти уравнение перпендикуляра L, опущенного из точки P на ось Oy.

Задача 3. Даны точки P_1 , P_2 и даны плоскости Q_1 , Q_2 :

$$P_1 = \langle -1, 1, 0 \rangle, P_2 = \langle 3, 3, 3 \rangle,$$

$$Q_1 = \{3x + y - z + 2 = 0\}, \quad Q_2 = \{x + 3y - z + 2 = 0\}.$$

- 1) Найти уравнение прямой L пересечения плоскостей Q_1 и Q_2 .
- 2) Найти уравнение плоскости Q, проходящей через точки P_1 и P_2 параллельно прямой L.

Задача 4. Даны точки P_1 , P_2 и дана прямая L:

$$P_1 = \langle -1, -1, -1 \rangle$$
, $P_2 = \langle 0, -2, -2 \rangle$, $L = \{x - 2z + 1 = 0, y + 2z - 1 = 0\}$.

- 1) Найти уравнение прямой L_1 , проходящей через точки P_1 и P_2 .
- 2) Найти угол $\angle(L_1, L)$ между прямыми L_1 и L.

Задача 5. Даны точки A, B и дано геометрическое место точек M:

$$A = \langle 0, -5, 0 \rangle, \quad B = \langle 0, 5, 0 \rangle, \quad M = \{P \in \Omega \mid |AP - BP| = 6\}.$$

$$r = \frac{18}{4 - 5\cos\varphi}.$$

Определить тип кривой Γ .

Задача 7. Даны точки $P_1,\,P_2$ и дана поверхность второго порядка Σ :

$$P_1 = \langle 0, 1, 0 \rangle, \quad P_2 = \langle 3, 1, 4 \rangle,$$

$$\Sigma = \{9x^2 + 4(y-1)^2 - 36z^2 = 36\}.$$

- 1) Определить тип поверхности Σ .
- 2) Изобразить схематически поверхность Σ .
- 3) Изобразить сечения поверхности Σ координатными плоскостями, по возможности соблюдая масштаб. Найти фокусы и асимптоты полученных кривых.
- 4) Определить, по одну или по разные стороны от поверхности Σ лежат точки P_1 и P_2 .
- 5) Определить, сколько точек пересечения с поверхностью Σ имеет прямая, проходящая через точки P_1 и P_2 (прямая L).

Задача 8. Дана точка A и дана прямая L:

$$A = \langle 2, -1, 1 \rangle$$
, $L = \{x = 3t + 1, y = -2t - 2, z = t + 2\}$.

Найти уравнение круговой цилиндрической поверхности Σ , проходящей через точку A, если осью этой поверхности является прямая L.

Замечание 1. Везде, где сказано найти уравнение плоскости, надо найти общее уравнение плоскости.

(1-й курс, 1-й семестр) (2012/2013 учебный год)

Типовой расчет

Вариант 9

Задача 1. Даны точки A, B, C, D:

$$A = \langle 0, -1, 2 \rangle$$
, $B = \langle 1, 1, 4 \rangle$, $C = \langle 3, -1, 5 \rangle$, $D = \langle 2, 1, -4 \rangle$.

- 1) Найти объем V_{ABCD} пирамиды ABCD.
- 2) Найти площадь S_{ABC} грани ABC.
- 3) Найти уравнение прямой AB (прямая L).
- 4) Найти длину ребра AB.
- 5) Найти уравнение плоскости ABC (плоскость Q).
- 6) Найти точку D_1 , симметричную точке D относительно плоскости ABC.

Задача 2. Дана плоскость Q:

$$Q = \{2x + y - \sqrt{5}z = 0\}.$$

Найти уравнение плоскости Q_1 , проходящей через ось Oz и образующей угол 60° с плоскостью Q.

Задача 3. Дана точка P и дана прямая L:

$$P = \langle 1, 2, 8 \rangle, \quad L = \left\{ \frac{x-1}{2} = \frac{y}{-1} = \frac{z}{1} \right\}.$$

Найти проекцию P_1 точки P на прямую L.

Задача 4. Дана точка P и даны плоскости Q_1, Q_2 :

$$P = \langle 1, 2, 4 \rangle$$
, $Q_1 = \{2x - y + 3z - 6 = 0\}$, $Q_2 = \{x + 2y - z + 3 = 0\}$.

- 1) Найти уравнение прямой L пересечения плоскостей Q_1 и Q_2 .
- 2) Найти уравнение плоскости Q, проходящей через точку P и через прямую L.

Задача 5. Даны точки A, B и дано геометрическое место точек M:

$$A = \langle 0, -2, 0 \rangle, \quad B = \langle 0, 2, 0 \rangle, \quad M = \{ P \in \Omega \mid AP + BP = 5 \}.$$

$$r = \frac{5}{1 - 2\cos\varphi}.$$

Определить тип кривой Γ .

Задача 7. Даны точки P_1, P_2 и дана поверхность второго порядка Σ :

$$P_1 = \langle 1, -4, 0 \rangle, \quad P_2 = \langle 3, -3, 2 \rangle,$$

$$\Sigma = \{(x-1)^2 + (y+1)^2 + 2z^2 = 4\}.$$

- 1) Определить тип поверхности Σ .
- 2) Изобразить схематически поверхность Σ .
- 3) Изобразить сечения поверхности Σ координатными плоскостями, по возможности соблюдая масштаб. Найти фокусы и асимптоты полученных кривых.
- 4) Определить, по одну или по разные стороны от поверхности Σ лежат точки P_1 и P_2 .
- 5) Определить, сколько точек пересечения с поверхностью Σ имеет прямая, проходящая через точки P_1 и P_2 (прямая L).

Задача 8. Дана точка S и дана сфера Σ :

$$S = \langle 5, 0, 0 \rangle, \quad \Sigma = \{x^2 + y^2 + z^2 = 9\}.$$

Найти уравнение конической поверхности Σ_1 , вершина которой находится в точке S, а образующие касаются сферы Σ .

Замечание 1. Везде, где сказано найти уравнение плоскости, надо найти общее уравнение плоскости.

(1-й курс, 1-й семестр) (2012/2013 учебный год)

Типовой расчет

Вариант 10

Задача 1. Даны точки A, B, C, D:

$$A = \langle 2, -1, -1 \rangle, \quad B = \langle -1, -1, 2 \rangle, \quad C = \langle -1, 2, -1 \rangle, \quad D = \langle -1, -1, -1 \rangle.$$

- 1) Найти объем V_{ABCD} пирамиды ABCD.
- 2) Найти площадь S_{ABC} грани ABC.
- 3) Найти уравнение прямой AB (прямая L).
- 4) Найти длину ребра AB.
- 5) Найти уравнение плоскости ABC (плоскость Q).
- 6) Найти точку D_1 , симметричную точке D относительно прямой AC (прямая L_1).

Задача 2. Дана точка P и даны плоскости Q_1, Q_2 :

$$P = \langle 2, 0, -3 \rangle, \quad Q_1 = \{3x - y + 2z - 7 = 0\}, \quad Q_2 = \{x + 3y - 2z - 3 = 0\}.$$

- 1) Найти уравнение прямой L пересечения плоскостей Q_1 и Q_2 .
- 2) Найти уравнение прямой L_1 , проходящей через точку P параллельно прямой L

Задача 3. Дана прямая L и дана плоскость Q:

$$L = \{3x - y + 1 = 0, 3x + 2z - 2 = 0\}, \quad Q = \{2x + y + z - 4 = 0\}.$$

Найти угол $\angle(L, Q)$ между прямой L и плоскостью Q.

Задача 4. Дана точка P, дана прямая L и дана плоскость Q:

$$P = \langle 1, 5, 10 \rangle, \quad L = \left\{ \frac{x}{2} = \frac{y-1}{1} = \frac{z+1}{2} \right\}, \quad Q = \{x + 2y + 3z - 29 = 0\}.$$

- 1) Найти точку P_1 пересечения прямой L и плоскости Q.
- 2) Найти уравнение прямой L_1 , проходящей через точки P и P_1 .

Задача 5. Даны точки A, B и дано геометрическое место точек M:

$$A = \langle 0, -10, 0 \rangle, \quad B = \langle 0, 10, 0 \rangle, \quad M = \{P \in \Omega \mid |AP - BP| = 12\}.$$

$$r = \frac{3}{2 - 3\cos\varphi}.$$

Определить тип кривой Γ .

Задача 7. Даны точки P_1, P_2 и дана поверхность второго порядка Σ :

$$P_1 = \langle 1, 2, 3 \rangle, \quad P_2 = \langle 0, -3, 2 \rangle,$$

$$\Sigma = \{36z = 4x^2 + 9(y+3)^2\}.$$

- 1) Определить тип поверхности Σ .
- 2) Изобразить схематически поверхность Σ .
- 3) Изобразить сечения поверхности Σ координатными плоскостями, по возможности соблюдая масштаб. Найти фокусы и асимптоты полученных кривых.
- 4) Определить, по одну или по разные стороны от поверхности Σ лежат точки P_1 и P_2 .
- 5) Определить, сколько точек пересечения с поверхностью Σ имеет прямая, проходящая через точки P_1 и P_2 (прямая L).

Задача 8. Дана сфера Σ :

$$\Sigma = \{(x+2)^2 + (y-1)^2 + (z-3)^2 = 9\}.$$

Найти уравнение конической поверхности Σ_1 , вершина которой находится в начале координат O, а образующие касаются сферы Σ .

Замечание 1. Везде, где сказано найти уравнение плоскости, надо найти общее уравнение плоскости.

(1-й курс, 1-й семестр) (2012/2013 учебный год)

Типовой расчет

Вариант 11

Задача 1. Даны точки A, B, C, D:

$$A = \langle 2, -2, 1 \rangle$$
, $B = \langle 1, -1, -1 \rangle$, $C = \langle 2, 0, -1 \rangle$, $D = \langle -4, 4, 1 \rangle$.

- 1) Найти объем V_{ABCD} пирамиды ABCD.
- 2) Найти площадь S_{ABC} грани ABC.
- 3) Найти уравнение прямой AB (прямая L).
- 4) Найти длину ребра AB.
- 5) Найти уравнение плоскости ABC (плоскость Q).
- 6) Найти уравнение прямой L_2 , симметричной прямой AD (прямая L_1) относительно плоскости ABC.

Задача 2. Даны прямые L_1, L_2 :

$$L_1 = \left\{ \frac{x}{2} = \frac{y}{-1} = \frac{z}{2} \right\}, \quad L_2 = \{x - 2 = 0, \ y - 2 = 0\}.$$

- 1) Найти уравнение плоскости Q_1 , проходящей через прямую L_1 параллельно прямой L_2 .
- 2) Найти уравнение плоскости Q_2 , проходящей через прямую L_2 параллельно прямой L_1 .
- 3) Найти расстояние $d(Q_1,\ Q_2)$ между плоскостями Q_1 и Q_2 .

Задача 3. Даны прямые L_1, L_2 :

$$L_1 = \{x - y + z - 4 = 0, 2x + y - 2z + 5 = 0\}, L_2 = \{x + y + z - 4 = 0, 2x + 3y - z - 6 = 0\}.$$

Найти угол $\angle(L_1, L_2)$ между прямыми L_1 и L_2 .

Задача 4. Дана точка P и дана прямая L:

$$P = \langle 1, 0, -1 \rangle, \quad L = \left\{ \frac{x+1}{1} = \frac{y-1}{2} = \frac{z}{-3} \right\}.$$

Найти уравнение плоскости Q, проходящей через точку P перпендикулярно прямой L.

Задача 5. Дана точка A, дана плоскость Q и дано геометрическое место точек M:

$$A=\langle 1,\ 2,\ 3 \rangle, \quad Q=\{x+y+z=0\}, \quad M=\{P\in\Omega\mid$$
 точка P является серединой некоторого отрезка AB , конец B которого лежит в плоскости $Q\}.$

$$r = \frac{4}{3 - \cos \varphi}.$$

Определить тип кривой Γ .

Задача 7. Даны точки $P_1,\,P_2$ и дана поверхность второго порядка Σ :

$$P_1 = \langle 0, 0, 2 \rangle, \quad P_2 = \langle 1, 2, 3 \rangle,$$

$$\Sigma = \{2(2-z) = x^2 + 2y^2\}.$$

- 1) Определить тип поверхности Σ .
- 2) Изобразить схематически поверхность Σ .
- 3) Изобразить сечения поверхности Σ координатными плоскостями, по возможности соблюдая масштаб. Найти фокусы и асимптоты полученных кривых.
- 4) Определить, по одну или по разные стороны от поверхности Σ лежат точки P_1 и P_2 .
- 5) Определить, сколько точек пересечения с поверхностью Σ имеет прямая, проходящая через точки P_1 и P_2 (прямая L).

Задача 8. Дана точка S и дан эллипсоид Σ :

$$S = \langle 3, 0, -1 \rangle, \quad \Sigma = \left\{ \frac{x^2}{6} + \frac{y^2}{2} + \frac{z^2}{3} = 1 \right\}.$$

Найти уравнение конической поверхности Σ_1 , вершина которой находится в точке S, а образующие касаются эллипсоида Σ .

Замечание 1. Везде, где сказано найти уравнение плоскости, надо найти общее уравнение плоскости.

(1-й курс, 1-й семестр) (2012/2013 учебный год)

Типовой расчет

Вариант 12

Задача 1. Даны точки A, B, C, D:

$$A = \langle 0, 5, 1 \rangle, \quad B = \langle 1, -2, -1 \rangle, \quad C = \langle 1, 1, 2 \rangle, \quad D = \langle -7, -7, 8 \rangle.$$

- 1) Найти объем V_{ABCD} пирамиды ABCD.
- 2) Найти площадь S_{ABC} грани ABC.
- 3) Найти уравнение прямой AB (прямая L).
- 4) Найти длину ребра AB.
- 5) Найти уравнение плоскости ABC (плоскость Q).
- 6) Найти проекцию L_2 прямой AD (прямая L_1) на плоскость ABC.

Задача 2. Даны прямые L_1, L_2 :

$$L_1 = \left\{ \frac{x-3}{2} = \frac{y}{1} = \frac{z-1}{2} \right\}, \quad L_2 = \left\{ \frac{x+1}{2} = \frac{y-1}{1} = \frac{z}{2} \right\}.$$

- 1) Доказать, что прямые L_1 и L_2 параллельны.
- 2) Найти уравнение плоскости Q, проходящей через прямые L_1 и L_2 .

Задача 3. Дана точка P и дана прямая L:

$$P = \langle 3, 0, 4 \rangle$$
, $L = \{2x - y + 1 = 0, 2x - z = 0\}$.

Найти расстояние d(P, L) от точки P до прямой L.

Задача 4. Дана прямая L и дана плоскость Q:

$$L = \{x + 2y + 3z - 13 = 0, 3x + y + 4z - 19 = 0\}, Q = \{5x - 3y + z = 0\}.$$

- 1) Найти точку P пересечения прямой L и плоскости Q.
- 2) Найти угол $\angle(L, Q)$ между прямой L и плоскостью Q.

Задача 5. Даны точки A, B и дано геометрическое место точек M:

$$A = \langle -2, 0, 0 \rangle, \quad B = \langle 2, 0, 0 \rangle, \quad M = \{ P \in \Omega \mid AP^2 + BP^2 = 16 \}.$$

$$r = \frac{1}{1 - \cos \varphi}.$$

Определить тип кривой Γ .

Задача 7. Даны точки $P_1,\,P_2$ и дана поверхность второго порядка Σ :

$$P_1 = \langle 0, 0, 1 \rangle, \quad P_2 = \langle 3, -2, 1 \rangle,$$

$$\Sigma = \{2x^2 + 4y^2 = (z - 1)^2\}.$$

- 1) Определить тип поверхности Σ .
- 2) Изобразить схематически поверхность Σ .
- 3) Изобразить сечения поверхности Σ координатными плоскостями, по возможности соблюдая масштаб. Найти фокусы и асимптоты полученных кривых.
- 4) Определить, по одну или по разные стороны от поверхности Σ лежат точки P_1 и P_2 .
- 5) Определить, сколько точек пересечения с поверхностью Σ имеет прямая, проходящая через точки P_1 и P_2 (прямая L).

Задача 8. Дан вектор a и дана окружность Γ :

$$a = \langle 2, -3, 4 \rangle, \quad \Gamma = \{x^2 + y^2 = 9, z = 1\}.$$

Найти уравнение цилиндрической поверхности Σ , образующие которой параллельны вектору a, а направляющей служит окружность Γ .

Замечание 1. Везде, где сказано найти уравнение плоскости, надо найти общее уравнение плоскости.

(1-й курс, 1-й семестр) (2012/2013 учебный год)

Типовой расчет

Вариант 13

Задача 1. Даны точки A, B, C, D:

$$A = \langle 1, -2, 0 \rangle$$
, $B = \langle -2, 4, -2 \rangle$, $C = \langle 0, 7, 4 \rangle$, $D = \langle 5, 6, -3 \rangle$.

- 1) Найти объем V_{ABCD} пирамиды ABCD.
- 2) Найти площадь S_{ABC} грани ABC.
- 3) Найти уравнение прямой AB (прямая L).
- 4) Найти длину ребра AB.
- 5) Найти уравнение плоскости ABC (плоскость Q).
- 6) Найти проекцию D_1 точки D на плоскость ABC.

Задача 2. Даны прямые L_1, L_2 :

$$L_1 = \{x - z + 2 = 0, \ y - 2z - 1 = 0\}, \quad L_2 = \left\{\frac{x - 2}{3} = \frac{y - 4}{1} = \frac{z - 2}{1}\right\}.$$

- 1) Доказать, что прямые L_1 и L_2 пересекаются.
- 2) Найти уравнение плоскости Q, проходящей через прямые L_1 и L_2 .

Задача 3. Даны прямые L_1, L_2 :

$$L_1 = \left\{ \frac{x}{2} = \frac{y}{3} = \frac{z}{1} \right\}, \quad L_2 = \left\{ x - z - 1 = 0, \ y + z - 1 = 0 \right\}.$$

Доказать, что прямые L_1 и L_2 перпендикулярны.

Задача 4. Дана прямая L и дана плоскость Q:

$$L = \left\{ \frac{x-2}{1} = \frac{y}{-2} = \frac{z}{0} \right\}, \quad Q = \{x+y+z-3 = 0\}.$$

Найти проекцию L_1 прямой L на плоскость Q.

Задача 5. Дана точка A и дано геометрическое место точек M:

$$A=\langle 3,\ -5,\ 7 \rangle, \quad M=\{P\in\Omega\mid$$
точка P является серединой

некоторого отрезка AB, конец B которого лежит в координатной плоскости $Oxy\}.$ Найти уравнение ГМТ M.

$$r = \frac{5}{1 - \frac{1}{2}\cos\varphi}.$$

Определить тип кривой Γ .

Задача 7. Даны точки P_1, P_2 и дана поверхность второго порядка Σ :

$$P_1 = \langle 1, 1, 0 \rangle, \quad P_2 = \langle 2, 1, -1 \rangle,$$

$$\Sigma = \left\{ \frac{x^2}{4} - \frac{y^2}{9} - (z - 1)^2 = 1 \right\}.$$

- 1) Определить тип поверхности Σ .
- 2) Изобразить схематически поверхность Σ .
- 3) Изобразить сечения поверхности Σ координатными плоскостями, по возможности соблюдая масштаб. Найти фокусы и асимптоты полученных кривых.
- 4) Определить, по одну или по разные стороны от поверхности Σ лежат точки P_1 и P_2 .
- 5) Определить, сколько точек пересечения с поверхностью Σ имеет прямая, проходящая через точки P_1 и P_2 (прямая L).

Задача 8. Дана плоскость Q и дана поверхность Σ :

$$Q = \{x + y + z = 0\}, \quad \Sigma = \{x^2 - y^2 = z\}.$$

Найти уравнение цилиндрической поверхности Σ_1 , образующие которой перпендикулярны плоскости Q, а направляющей служит кривая $\Gamma = \Sigma \cap Q$.

Замечание 1. Везде, где сказано найти уравнение плоскости, надо найти общее уравнение плоскости.

(1-й курс, 1-й семестр) (2012/2013 учебный год)

Типовой расчет

Вариант 14

Задача 1. Даны точки A, B, C, D:

$$A = \langle 1, 1, 4 \rangle$$
, $B = \langle -1, 3, 4 \rangle$, $C = \langle -1, 1, 6 \rangle$, $D = \langle -1, 1, 4 \rangle$.

- 1) Найти объем V_{ABCD} пирамиды ABCD.
- 2) Найти площадь S_{ABC} грани ABC.
- 3) Найти уравнение прямой AB (прямая L).
- 4) Найти длину ребра AB.
- 5) Найти уравнение плоскости ABC (плоскость Q).
- 6) Найти проекцию D_1 точки D на прямую AC (прямая L_1).

Задача 2. Дана точка P и даны векторы a_1, a_2 :

$$P = \langle 1, 1, 1 \rangle, \quad \boldsymbol{a}_1 = \langle 0, 1, 2 \rangle, \quad \boldsymbol{a}_2 = \langle -1, 0, 1 \rangle.$$

Найти уравнение плоскости Q, проходящей через точку P параллельно векторам a_1 и a_2 .

Задача 3. Дана точка P и даны прямые L_1, L_2 :

$$P = \langle 1, 1, 2 \rangle, \quad L_1 = \left\{ \frac{x-1}{2} = \frac{y+4}{5} = \frac{z}{-1} \right\}, \quad L_2 = \{x-z+2 = 0, y-2z-1 = 0\}.$$

Найти уравнение прямой L, проходящей через точку P перпендикулярно прямым L_1 и L_2 .

Задача 4. Даны прямые L_1 , L_2 и дана плоскость Q:

$$L_1 = \left\{ \frac{x+2}{4} = \frac{y+1}{-1} = \frac{z-3}{3} \right\}, \quad L_2 = \left\{ \frac{x+2}{4} = \frac{y+1}{-1} = \frac{z+3}{3} \right\},$$

$$Q = \left\{ x+y-z=0 \right\}.$$

- 1) Доказать, что прямая L_1 параллельна плоскости Q.
- 2) Доказать, что прямая L_2 лежит в плоскости Q.

Задача 5. Дана точка A и дано геометрическое место точек M:

$$A = \langle -3, -5, 9 \rangle$$
, $M = \{ P \in \Omega \mid \text{точка } P \text{ является серединой }$

некоторого отрезка AB, конец B которого лежит в координатной плоскости Oyz }.

$$r = \frac{5}{1 - \cos \varphi}.$$

Определить тип кривой Γ .

Задача 7. Даны точки $P_1,\,P_2$ и дана поверхность второго порядка Σ :

$$P_1 = \langle 2, 1, 0 \rangle, \quad P_2 = \langle 2, 1, 8 \rangle,$$

$$\Sigma = \left\{ 1 - z = \frac{x^2}{4} + \frac{y^2}{9} \right\}.$$

- 1) Определить тип поверхности Σ .
- 2) Изобразить схематически поверхность Σ .
- 3) Изобразить сечения поверхности Σ координатными плоскостями, по возможности соблюдая масштаб. Найти фокусы и асимптоты полученных кривых.
- 4) Определить, по одну или по разные стороны от поверхности Σ лежат точки P_1 и P_2 .
- 5) Определить, сколько точек пересечения с поверхностью Σ имеет прямая, проходящая через точки P_1 и P_2 (прямая L).

Задача 8. Дана плоскость Q и дана сфера Σ :

$$Q = \{x + y - 2z - 5 = 0\}, \quad \Sigma = \{x^2 + y^2 + z^2 = 1\}.$$

Найти уравнение цилиндрической поверхности Σ_1 , образующие которой перпендикулярны плоскости Q и касаются сферы Σ .

Замечание 1. Везде, где сказано найти уравнение плоскости, надо найти общее уравнение плоскости.