1. Recovering a Curve from its Curvature

Recall that a planar curve is uniquely determined by its curvature as a function of arc length and starting position and starting direction.
For parts 1b-1e, use Maple or some software to make the plots. You can also do Maple for 1a to help integrate if you like.
(a) Find some 2-D curve \mathbf{r} on $[1, \infty)$ such that its signed curvature with respect to arc length is given by $\kappa_{s}(s)=1 / s$ for $s>0$. and $\mathbf{r}(1)=[0,0]$ and $\mathbf{r}^{\prime}(1)=[1,0]$.
(b) Plot the curve \mathbf{r} for $t \in[1,10]$.
(c) Plot the curve \mathbf{r} for $t \in[1,100]$.
(d) Plot the curve \mathbf{r} for $t \in[1,1000]$.
(e) Plot the curve \mathbf{r} for $t \in[1,10000]$.
(f) Explain how the curvature is determining the curve
2. Some Handy Facts Show the following. These will be useful for later problems.
(a) Show that for a 2-D vector a that $\left((\mathbf{a})^{\perp}\right)^{\perp}=-\mathbf{a}$
(b) Show that if \mathbf{r} is a planar curve parameterized by arc length that $\mathbf{r}^{\prime \prime}(t)=\kappa_{s}(t)\left(\mathbf{r}^{\prime}(t)\right)^{\perp}$
3. Normal Offsets.

Suppose $\mathbf{r}(t)$ is a regular smooth curve with signed curvature $\kappa_{s}(t)$. Let α be a scalar and define

$$
\mathbf{q}(t)=\mathbf{r}(t)+\alpha \frac{1}{\left\|\mathbf{r}^{\prime}(t)\right\|}(\mathbf{r}(t))^{\perp}
$$

The curve \mathbf{q} is called a normal offset of \mathbf{r}.
(a) Plot some normal offsets of the curve $\mathbf{r}(t)=\left(t, t^{2}\right)$ for $t \in[-1,1]$. Make plots for the following alphas: $\alpha=-2,-1,0,1 / 4,1 / 2,1$; and more if you like. (Use Maple or some software.)
(b) Supposing that \mathbf{r} is parameterized by arc length, find a simplified formula for $\mathbf{q}^{\prime}(t)$ in terms of \mathbf{r}, $\mathbf{r}^{\prime}, \kappa_{s}$ and α. Show that $\mathbf{q}^{\prime}(t)$ is parallel to $\mathbf{r}^{\prime}(t)$.
(c) Using the formula you found in the previous part and assuming $\kappa_{s}>0$, find conditions on α so that \mathbf{q} is regular.
(d) Explain what happens in the pictures you made in part (a) when \mathbf{q} is not regular.

4. Involutes and Evolutes:

- The evolute of a regular smooth curve $\mathbf{q}(t)$ on $[a, b]$ is given by

$$
\mathbf{e}(t)=\mathbf{q}(t)+R_{s}(t) \frac{1}{\left\|\mathbf{q}^{\prime}(t)\right\|}\left(\mathbf{q}^{\prime}(t)\right)^{\perp}
$$

where $R_{s}(t)=1 / \kappa_{s}(t)$ is the signed radius of curvature of \mathbf{q}.

- The general involute of a regular smooth curve $\mathbf{r}(t)$ on $[a, b]$ is given by

$$
\mathbf{v}(t)=\mathbf{r}(t)-(s(t)+l) \frac{1}{\left\|\mathbf{r}^{\prime}(t)\right\|} \mathbf{r}^{\prime}(t)
$$

where $s(t)$ is the arc length of \mathbf{r} from a to t and l is some constant corresponding to the initial string length.
(a) Involutes of Evolutes: Let \mathbf{q} be parameterized by arc length and let \mathbf{e} be its evolute.
i. Show that $\mathbf{e}^{\prime}(t)$ is perpendicular to $\mathbf{q}^{\prime}(t)$
ii. Show that the involute of $\mathbf{e}(t)$ is equal to $\mathbf{q}(t)$ for the appropriate choice of the constant l.
(b) Evolutes of Involutes: Let \mathbf{r} be parameterized by arc length and let \mathbf{v} be its involute.
i. Show that $\mathbf{r}^{\prime}(t)$ is perpendicular to $\mathbf{v}^{\prime}(t)$
ii. Show that the evolute of $\mathbf{v}(t)$ is equal to $\mathbf{r}(t)$
(c) Make a sketch that illustrates how involutes and evolutes are inverse processes. Label all the parts.

5. Torsion/Curvature $=$ constant

(a) Suppose we want a space curve with constant curvature κ and constant torsion τ so that $\tau / \kappa=L$ for some constant L. Find constants a and b so that the helix $\mathbf{r}(t)=[a \cos (t), a \cos (t), b t]$ has such curvatures and torsions.
(b) For the space curve, $\mathbf{r}(t)=\left(\cos (t)+t \sin (t), \sin (t)-t \cos (t), t^{2} / 2\right)$, calculate the curvature and torsion and show that the ratio, torsion/curvature, is constant. (Notice that the projection into the $x-y$ plane of this curve is is an involute of a circle.)

