1. Recovering a Curve from its Curvature

Recall that a planar curve is uniquely determined by its curvature as a function of arc length and starting position and starting direction.

For parts 1b-1e, use Maple or some software to make the plots. You can also do Maple for 1a to help integrate if you like.

- (a) Find some 2-D curve \mathbf{r} on $[1, \infty)$ such that its signed curvature with respect to arc length is given by $\kappa_s(s) = 1/s$ for s > 0. and $\mathbf{r}(1) = [0, 0]$ and $\mathbf{r}'(1) = [1, 0]$.
- (b) Plot the curve \mathbf{r} for $t \in [1, 10]$.
- (c) Plot the curve **r** for $t \in [1, 100]$.
- (d) Plot the curve **r** for $t \in [1, 1000]$.
- (e) Plot the curve **r** for $t \in [1, 10000]$.
- (f) Explain how the curvature is determining the curve
- 2. Some Handy Facts Show the following. These will be useful for later problems.
 - (a) Show that for a 2-D vector \mathbf{a} that $\left(\left(\mathbf{a}\right)^{\perp}\right)^{\perp} = -\mathbf{a}$

(b) Show that if **r** is a planar curve parameterized by arc length that $\mathbf{r}''(t) = \kappa_s(t) (\mathbf{r}'(t))^{\perp}$

3. Normal Offsets.

Suppose $\mathbf{r}(t)$ is a regular smooth curve with signed curvature $\kappa_s(t)$. Let α be a scalar and define

$$\mathbf{q}(t) = \mathbf{r}(t) + \alpha \frac{1}{||\mathbf{r}'(t)||} \left(\mathbf{r}(t)\right)^{\perp}$$

The curve \mathbf{q} is called a normal offset of \mathbf{r} .

- (a) Plot some normal offsets of the curve $\mathbf{r}(t) = (t, t^2)$ for $t \in [-1, 1]$. Make plots for the following alphas: $\alpha = -2, -1, 0, 1/4, 1/2, 1$; and more if you like. (Use Maple or some software.)
- (b) Supposing that \mathbf{r} is parameterized by arc length, find a simplified formula for $\mathbf{q}'(t)$ in terms of \mathbf{r} , \mathbf{r}' , κ_s and α . Show that $\mathbf{q}'(t)$ is parallel to $\mathbf{r}'(t)$.
- (c) Using the formula you found in the previous part and assuming $\kappa_s > 0$, find conditions on α so that **q** is regular.
- (d) Explain what happens in the pictures you made in part (a) when **q** is not regular.

4. Involutes and Evolutes:

• The evolute of a regular smooth curve $\mathbf{q}(t)$ on [a, b] is given by

$$\mathbf{e}(t) = \mathbf{q}(t) + R_s(t) \frac{1}{||\mathbf{q}'(t)||} \left(\mathbf{q}'(t)\right)^{\perp}$$

where $R_s(t) = 1/\kappa_s(t)$ is the signed radius of curvature of **q**.

• The general involute of a regular smooth curve $\mathbf{r}(t)$ on [a, b] is given by

$$\mathbf{v}(t) = \mathbf{r}(t) - (s(t)+l)\frac{1}{||\mathbf{r}'(t)||}\mathbf{r}'(t)$$

where s(t) is the arc length of **r** from *a* to *t* and *l* is some constant corresponding to the initial string length.

- (a) Involutes of Evolutes: Let \mathbf{q} be parameterized by arc length and let \mathbf{e} be its evolute.
 - i. Show that $\mathbf{e}'(t)$ is perpendicular to $\mathbf{q}'(t)$
 - ii. Show that the involute of $\mathbf{e}(t)$ is equal to $\mathbf{q}(t)$ for the appropriate choice of the constant l.
- (b) Evolutes of Involutes: Let \mathbf{r} be parameterized by arc length and let \mathbf{v} be its involute.
 - i. Show that $\mathbf{r}'(t)$ is perpendicular to $\mathbf{v}'(t)$
 - ii. Show that the evolute of $\mathbf{v}(t)$ is equal to $\mathbf{r}(t)$
- (c) Make a sketch that illustrates how involutes and evolutes are inverse processes. Label all the parts.

5. Torsion/Curvature = constant

- (a) Suppose we want a space curve with constant curvature κ and constant torsion τ so that $\tau/\kappa = L$ for some constant L. Find constants a and b so that the helix $\mathbf{r}(t) = [a\cos(t), a\cos(t), bt]$ has such curvatures and torsions.
- (b) For the space curve, $\mathbf{r}(t) = (\cos(t) + t\sin(t), \sin(t) t\cos(t), t^2/2)$, calculate the curvature and torsion and show that the ratio, *torsion/curvature*, is constant. (Notice that the projection into the x y plane of this curve is an involute of a circle.)