ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

СОГЛАСОВАНО: Выпускающей кафед «Вычислительная тех		-	УТВЕРЖДАЮ: Проректор - директор Российской открытой академии транспорта						
Зав. кафедрой	В.Ю. 1	Горелик	подпись, Ф.И.О.)	В.И. А	Апатцев				
« »	20		«»						
Кафедра: «Вычисли (название кафедры)	тельная т	гехника»							
Авторы: Ермаков А. ф.и.о., ученая степень, ученое	.Е., к.тех звание)	.н, доц.							
ЗАДАНИЕ З Направление/специал (код, наименование специально	«Иі зьность:	НТРОЛЬНУЮ нформационна (название ди 230700.62. Принения)	ая безопасност осциплины)	гь»	ІЛИНЕ				
Профиль/специализа	ция: «Пр	икладная инфо	рматика в инфо	ормационной	і сфере» (ИИ)				
Квалификация (степ	ень) выпу	ускника: бакала	вр						
Форма обучения: зао	чная								
Одобрена на заседан Учебно-методическо Протокол № « » Председатель УМК _ подпись, Ф.И.О.)	й комисс 20		Одобрена на за «Вычислитель Протокол № « » кафедрой (подпись, Ф.И.О.)	ьная техника»	-				

ОБЩИЕ УКАЗАНИЯ

Контрольная работа выполняется на листах формата А4. На титульном листе должны быть указаны данные студента и его учебный шифр.

Для выполнения контрольной работы необходимо:

- изучить методические указания и рекомендуемую литературу;
- определить свой вариант задания;
- изучить заданные алгоритмы шифрования;
- зашифровать свою фамилию и полное имя методом гаммирования и по алгоритму RSA;
- выполнить проверку путем дешифрования шифротекста.

В контрольной работе должны быть выполнены все пункты задания, которое приводится в начале работы. Контрольные работы, не соответствующие указанным требованиям, возвращаются студенту без рецензии.

ЗАДАНИЕ НА КОНТРОЛЬНУЮ РАБОТУ

Контрольная работа состоит из двух задач.

ЗАДАЧА 1

Зашифровать фамилию и полное имя студента методом гаммирования. Под гаммированием понимают процесс наложения по определенному закону (чаще всего с использованием операции сложения по модулю 2) гаммы шифра на открытые данные. Гамма шифра — это псевдослучайная последовательность целых чисел, для генерации которых наиболее часто применяется так называемый линейный конгруэнтный генератор. Закон функционирования такого генератора описывается соотношением:

$$T_i = (T_{i-1} \cdot A + C) \operatorname{mod} M \qquad (1)$$

где T_i — текущее число последовательности; T_{i-1} — предыдущее число последовательности; A, C и M — константы; М — модуль; А — множитель; С — приращение; T_0 — порождающее число.

Текущее псевдослучайное число T_i получают из предыдущего числа T_{i-1} умножением его на коэффициент A, сложением с приращением C и вычислением целочисленного остатка от деления на модуль M. Данное уравнение генерирует псевдослучайные числа с периодом повторения, который зависит от выбираемых значений параметров A, C и M. Значение модуля M берется равным 2^n , либо равным простому числу, например $M=2^{31}-1$. Приращение C должно быть взаимно простым с M, коэффициент A должен быть нечетным числом.

Вариант задания определяется в соответствии с табл. 1.

Таблица 1

	1
Константа	Значение
T_0	7
A	9
C	Сумма двух последних цифр
	шифра
M	64

Шифрование текста методом гаммирования рекомендуется выполнять в следующей последовательности:

- 1. Определить константы шифрования по табл. 1.
- 2. Каждой букве шифруемого текста поставить в соответствие десятичное число по табл. 2.

Таблица 2

A	Б	В	Γ	Д	Е	Ж	3	И	Й	К	Л	M	Н	О	П	P
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
C	T	У	Φ	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я		
18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	

- 2. Сгенерировать гамму шифра в соответствии с выражением (1).
- 3. Полученные числа (шифруемый текст и гамма шифра) перевести в двоичный. Замечание. Каждое число представляется байтом.
 - 4. Наложить гамму шифра на шифруемый текст по формуле (2):

$$III_i = C_i \oplus T_i, \qquad (2)$$

где $III_i - i$ - ый символ шифрограммы, представленный в двоичном коде; $C_i - i$ - ый символ исходного текста, представленный в двоичном коде.

- 5. Полученную шифрограмму перевести в десятичный код и по табл. 2 получить текстовую форму шифрограммы. Замечание. В процессе выполнения операции сложение по модулю 2 могут получиться числа больше 32. В этом случае рекомендуется выполнить операцию mod32. Однако при дешифровке необходимо использовать исходное число.
- 6. Выполнить проверку шифрования путем наложения гаммы шифра на шифрограмму.

ЗАДАЧА 2

Зашифровать фамилию и полное имя студента по алгоритму RSA. Порождающие числа выбрать в соответствии с табл. 3. Причем число p выбирается по последней цифре шифра, а число q – по предпоследней цифре.

Таблица 3

Цифра	0	1	2	3	4	5	6	7	8	9
p	7	11	13	17	19	23	29	19	17	13
\overline{q}	23	19	29	7	13	11	19	11	23	29

Замечание. Если числа p и q совпадают, то следует взять другое большее простое число.

Шифрование текста по алгоритму RSA рекомендуется выполнять в следующей последовательности:

1. Определить порождающие числа по табл. 3.

- 2. Каждой букве шифруемого текста поставить в соответствие десятичное число по табл. 2.
 - 3. Вычислить произведение порождающих чисел $N = p \cdot q$.
 - 4. Вычислить функцию Эйлера по формуле:

$$\varphi(n) = (p-1) \cdot (q-1)$$

5. Выбрать открытый ключ шифрования K_{OTK} , который должен удовлетворять следующим неравенствам:

$$1 < K_{OTK} < \varphi(n);$$

$$HOД(K_{OTK}, \varphi(n)) \equiv 1$$

Значение K_{OTK} выбирается произвольным образом из указанного диапазона чисел, а наибольший общий делитель (НОД) K_{OTK} и функции Эйлера должен быть равен 1, т.е. эти два числа должны быть взаимно простыми. Так как порождающие числа с точки зрения криптографии ничтожно малы, то рекомендуется соблюдать два дополнительных условия: $K_{OTK} \neq p$, $K_{OTK} \neq q$.

6. Вычислить секретный ключ $K_{\it CEK}$ по формуле:

$$K_{CEK} = K_{OTK}^{(\varphi(n)-1)} \bmod \varphi(n)$$

При вычислении $K_{\it CEK}$ рекомендуется выполнить ряд последовательных умножений, выполняя каждый раз приведение по модулю. Например, необходимо вычислить 25 степень некоторого числа a по модулю n: $a^{25} \, {\rm mod} \, n$. Представим степень 25 в виде целых степеней 2:

$$25 = 2^4 + 2^3 + 2^0$$
.

Таким образом, нам необходимо вычислить 8 и 16 степени числа a. Для вычисления 8 степени воспользуемся выражением:

$$((a^2 \bmod n)^2 \bmod n)^2 \bmod n$$
.

Для вычисления 16 степени, полученное на предыдущем шаге число необходимо возвести в квадрат и привести его по модулю.

7. Зашифровать исходный текст по формуле:

$$III_i = C_i^{K_{OTK}} \mod N$$
,

где $III_i - i$ - ый символ шифрограммы, представленный в десятичном коде; $C_i - i$ - ый символ исходного текста, представленный в десятичном коде.

8. Выполнить проверку, дешифровав шифрограмму по формуле:

$$III_i = C_i^{K_{CEK}} \bmod N.$$