Задача 1. Анализ соотношений между токами, напряжениями и параметрами элементов в каскаде усилителя напряжения

Определить приемлемые значения сопротивлений и емкостей каскада усилителя на биполярном транзисторе с резистивно-емкостными связями и с термостабилизацией. Изучить соотношение между токами в разных ветвях по схеме усилителя. Исходные данные взять из таблицы 1.1, схему усилителя на рисунке 1.1. Оценить коэффициент усиления этого усилителя и амплитуду входного сигнала, обеспечивающего заданное значение амплитуды выходного сигнала.

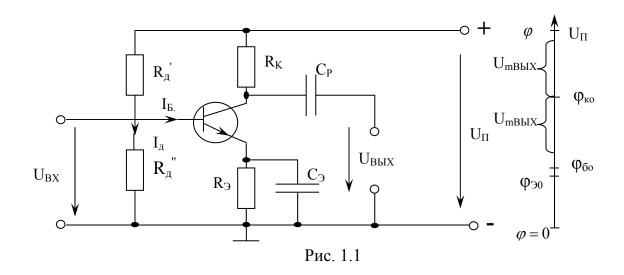


Таблица 1.1

Вариант	h _{11Э} , Ом	h ₂₁₃	R _H , кОм	U_{mBbIX} , B	f _н , Гц	M_{H}	U_{Π}, B
1	2	3	4	5	6	7	8
1	850	28	2,4	1,8	50	1,3	9
2	900	30	3,1	3,6	30	1,2	9
3	950	45	3,6	3,5	25	1,28	12
4	540	35	1,8	3,2	65	1,22	12
5	930	30	4,8	3,1	150	1,25	18
6	1300	45	1,5	3,0	70	1,15	9
7	1100	40	3,3	2,8	40	1,25	15
8	750	75	4,5	2,7	100	1,2	12
9	4500	120	1,8	2,5	20	1,15	9
10	2500	85	3,2	2,3	35	1,2	9

1	2	3	4	5	6	7	8
11	900	30	4,3	2,1	80	1,28	6
12	930	30	4,8	2,0	90	1,3	6
13	1100	30	5,1	1,8	85	1,25	9
14	540	35	6,3	1,7	95	1,2	6
15	850	28	4,5	1,5	85	1,22	5
16	4500	120	5,2	3,4	75	1,25	12
17	1300	45	4,5	2,2	60	1,28	9
18	1100	40	6,8	4,0	90	1,3	18
19	2500	85	7,0	1,6	70	1,25	6
20	750	75	6,2	3,4	50	1,22	12
21	850	30	2,0	2,4	80	1,2	9
22	950	45	1,5	2,0	200	1,15	9
23	930	30	1,0	0,5	250	1,2	3
24	540	35	3,0	3,0	130	1,25	9
25	750	75	5,0	1,0	70	1,28	5
26	900	30	2,0	3,0	50	1,3	9
27	850	28	1,0	3,0	90	1,25	12
28	1300	45	1,5	2,0	130	1,22	9
29	1100	40	3,3	2,8	200	1,2	9
30	750	75	6,0	1,5	50	1,15	6

Методические указания к задаче 1

Прежде чем приступить к расчету, надо повторить теорию. Вспомнить схему усилителя. Назначение отдельных элементов. Входные и выходные характеристики транзистора. Смысл его параметров h_{119} и h_{219} . Принцип усиления напряжения. Причины нелинейных и частотных искажений. Проследить путь сигнала. Уяснить влияние положения рабочей точки (значение тока покоя коллектора) на работу усилителя. Как происходит термостабилизация режима работы усилителя при включении резистора в цепь эмиттера? Зачем параллельно ему ставят конденсатор?

Заданными будем считать: $U_{mBыX}-$ амплитуду выходного сигнала; f_H- нижнюю граничную частоту; M_H- предельно допустимый коэффициент искажений на нижней граничной частоте; R_H-

сопротивление нагрузки каскада; h_{219} – коэффициент усиления тока базы транзистора; h_{119} – входное сопротивление транзистора (сопротивление базо-эмиттерного перехода).

Для упрощения расчетов будем пользоваться без вывода некоторыми соотношениями величин, которые, как показывают классические расчеты и практика, близки к оптимальным для подавляющего большинства случаев. Будем помечать индексом 0 токи и напряжения при отсутствии сигнала на входе усилителя. Например, потенциал эмиттера при отсутствии сигнала ϕ_{90} должен составлять около одной четверти напряжения питания U_{Π} , сопротивление в цепи коллектора R_{K} обычно ставят близким к сопротивлению нагрузки R_H, ток в цепи делителя $I_{\text{д}} = 5 \cdot I_{\text{Б0}}$. При выборе больших токов $I_{\text{д}}$ падает входное сопротивление каскада, при уменьшении I_{π} снижается стабильность его работы. Эти величины проставлены на схеме (рис. 1.1), из которой видно, о чем идет речь. Желательное распределение напряжений на элементах рабочей цепи R_{K} – транзистор – R_{\Im} представлено на рис. 1.1 справа. Поднявшись по оси ϕ на $0.25 \cdot U_{\Pi}$ от точки $\phi = 0$, получим потенциал эмиттера ϕ_{90} . Оставшееся расстояние до значения потенциала положительного полюса питания U_{Π} поделим пополам и найдем положение точки, соответствующей ϕ_{Θ} потенциалу коллектора фко. При этом, как видим, мы можем рассчитывать на наибольшее значение амплитуды неискаженного полезного сигнала обеих полярностей: от $\,\phi_{\kappa o}\,$ до $\,U_\Pi\,$ и $\,$ от $\,\phi_{\kappa o}\,$ до $\,\phi_{9o}.$

0,5 — 1 вольту надо оставить с каждой стороны до предельных значений амплитуды во избежание нелинейных искажений. Примерно такое остаточное напряжение падает на самом транзисторе даже «полностью открытом». Необходим запас и со стороны положительного потенциала источника питания, в особенности, если питание обеспечивается, например, гальваническими элементами, снижающими свое напряжение по мере разрядки.

При малом размахе выходного напряжения, по сравнению с разностью $U_{\Pi} - \phi_{90}$, в целях повышения КПД за счет уменьшения I_{KO} ,

потенциал коллектора ϕ_{90} можно сместить вверх вплоть до значения ϕ_{90} = $U_{\Pi} - U_{mBbIX}$. Если же двойная амплитуда (размах колебания) выходного сигнала не вписывается в этот интервал ($U_{\Pi} - \phi_{90} - 1$ В), то поставленная задача оказывается невыполнимой. Решать ее придется либо за счет снижения качества термостабилизации, уменьшая ϕ_{90} , либо повышая U_{Π} . Если у Вас создалась такая ситуация, согласуйте свои дальнейшие действия с преподавателем.

Первое, с чего удобно начать расчет, это определение $\phi_{90} = \frac{U_{\Pi}}{4}$.

Затем находим $\phi_{K0} = \frac{U_{\Pi} \cdot \phi_{90}}{2} + \phi_{90}$. По уже приведенным выше рекомендациям примем $R_K = R_H$.

Как можно видеть на диаграмме потенциалов справа от схемы (рис. 1.1), напряжение на сопротивлении R_K равно $U_{RK} = U_{\Pi} - \phi_{KO}$.

Теперь находим ток покоя коллектора $I_{\text{KO}} = \frac{U_{\text{RK}}}{R_{\text{K}}}$.

Находим ток покоя эмиттера $K_U = \frac{U_m \Delta I_{mK}}{h_{212}}$.

Впрочем, при реальных значениях h_{219} в несколько десятков, а то и сотен с достаточной точностью можно принять $I_{90} = I_{K0}$.

Находим сопротивление в цепи эмиттера $R_9 = \frac{\phi_{KO}}{I_{90}}$.

Примем напряжение на эмиттерно-базовом переходе U_{690} =0,3 В. Тогда потенциал базы равен $U_{60} = \phi_{60} + 0,3$ В. Как уже отмечалось, ток делителя I_{π} должен быть примерно в 5 раз больше тока покоя базы.

Тогда
$$I_{\text{д}} = \frac{5 \cdot I_{\text{K}}}{h_{219}}$$
, а $R_{\text{д}}'' = \frac{\phi_{\text{БО}}}{I_{\text{д}}}$.

На сопротивлении $\,R_{_{\! I\! J}}\,$ падает напряжение $\,U_{\Pi}-\phi_{6o},\,$ а протекающий через него ток равен $\,I_{_{\! I\! J}}+I_{60}.\,$

Следовательно,
$$R'_{\text{д}} = \frac{U_{\text{п}} - U_{\text{б0}}}{I_{\text{л}} + I_{\text{б0}}}$$
.

Сопротивление $X_{C\Im}$ емкости C_{\Im} должно быть много меньше R_{\Im} , чтобы ток полезного сигнала не создавал в нем заметного напряжения и не уменьшал коэффициента усиления каскада K_U .

Примем
$$\frac{R_{\ni}}{X_{C\ni}}$$
=20, тогда $R_{\ni}=20\cdot X_{C\ni}$ или $C_{\ni}=\frac{20}{2\pi f_{_H}R_{_{\ni}}}$.

Для расчета величины СР применим упрощенную форму

$$C_{p} = \frac{1}{2\pi f_{H} (R_{2} + R_{H}) \sqrt{M^{2} - 1}}.$$

Приступим к расчету требуемой амплитуды входного сигнала. Приращение тока коллектора при повышении тока базы растекается по двум сопротивлениям: R_K и R_H .

Поскольку мы приняли их равными, приращение тока в нагрузке будет $0,5\cdot\Delta I_K$. Поэтому в момент, соответствующий амплитуде выходного напряжения, приращение тока коллектора составит $\Delta I_{mK}=2\frac{U_{mBыX}}{R_H}$. Ему будет соответствовать приращение тока базы $\Delta I_{mE}=\frac{\Delta I_{mK}}{h_{219}}$, а амплитуда входного сигнала, обеспечивающая это приращение, должна быть $U_{mBX}=\Delta I_{mE}\cdot h_{119}$. Конечно, это приближенное, несколько заниженное значение напряжения, т. к. на пути тока сигнала базы, кроме входного (база-эмиттер), сопротивления транзистора h_{119} существует еще цепочка R_3C_9 . Но сопротивление ее току сигнала стараются сделать пренебрежимо малым по сравнению с h_{119} , и тогда напряжение на R_3C_9 можно не учитывать.

Наконец, коэффициент усиления можно рассчитать как $K_U = \frac{U_{mBblX}}{U_{mBX}}$.