Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

Иркутский национальный исследовательский технический университет

Кафедра электроснабжения и электротехники

КОНТРОЛЬНАЯ РАБОТА по качеству электрической энергии

Направление

подготовки 650900 "Электроэнергетика"

Специальность 100400 "Электроснабжение"

Отделение заочное

Разработал: к.т.н., доцент кафедры электроснабжения и электротехники Коверникова Л.И.

Для выполнения работы использовать:

1. ГОСТ 32144-2013. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. - Москва, Стандартинфо, 2013.

Задача 1

Определить значения коэффициентов гармонических составляющих напряжения ($K_{U(n)}$) и значение суммарного коэффициента гармоник (K_U) по результатам измерений, представленных в табл.1 и сопоставить с нормами ГОСТ 32144-2013.

Таблица 1. Измеренные значения напряжений гармоник

Таблица 1. Измеренные значения напряжений гармоник									
Вариант	$U_{(5)}$, B	$U_{(7)}$, B	$U_{(II)}$, B	$U_{(13)}$, B	$U_{(17)}$, B	$U_{(19)}$, B	U_I , кВ		
1	4	6	10	15	8	6	10		
2	5	3	2	7	2	5	6		
3	10	15	15	10	5	5	0.38		
4	12	17	2	5	1	6	0.38		
5	16	23	3	13	5	3	0.38		
6	13	17	4	1	7	6	6		
7	4	16	10	5	8	6	10		
8	5	3	2	17	2	5	10		
9	10	15	15	10	5	5	6		
10	3	7	4	1	7	6	0.38		
11	4	16	18	5	8	6	0.38		
12	5	23	2	7	2	5	10		
13	10	15	15	10	5	5	6		
14	11	7	14	11	7	6	0.38		
15	24	26	10	15	8	6	0.38		
16	3	27	14	9	7	6	6		
17	5	3	2	9	2	15	6		
18	10	15	15	10	5	5	10		
19	17	7	14	6	7	6	0.38		
20	4	26	10	5	8	6	0.38		
21	14	7	24	1	7	16	10		
22	25	13	2	17	2	5	0.38		
23	11	25	15	1	5	5	6		
24	15	7	3	17	7	6	0.38		
25	5	13	12	17	2	5	10		
26	5	17	3	13	7	6	6		
27	24	6	18	15	8	6	6		
28	10	15	5	11	5	5	0.38		
29	19	7	9	1	7	6	10		
30	5	33	2	7	12	5	6		

Формулы для вычисления показателей:

1.
$$K_{U(n)} = \frac{U_n}{U_I} 100 \%$$
,

где \boldsymbol{U}_n - действующее значение напряжения \boldsymbol{n} -ой гармоники,

 \boldsymbol{U}_{I} - действующее значение напряжения основной гармоники,

2.
$$K_U = \frac{\sqrt{\sum\limits_{n=2}^{40} {U_n}^2}}{U_I} 100 \%$$
.

Задача 2

Определить значения коэффициентов несимметрии напряжений по обратной (K_{2U}) и нулевой последовательностям ($K_{\theta U}$) по результатам измерений, представленным в табл.2 и сопоставить с нормами ГОСТ 32144-2013.

Таблица 2. Измеренные значения напряжений обратной и нулевой последовательностей

1 2 3 3 4 4 5 5	, B 50 50 60 60	U ₂ , B 10 20 30 40 50	U ₁ , κB 0.38 0.38 0.38 0.38
2 3 3 4 4 5	60 60 60	20 30 40	0.38 0.38
3 4 5	60 50	30 40	0.38
4 5	50	40	
	50		0.38
		50	0.50
5 6	-	30	0.38
6 7	0	60	0.38
7 8	30	70	0.38
8 9	00	80	0.38
9 1	.0	90	0.38
10 1	.0	20	0.38
11 2	20	21	0.38
12 3	80	22	0.38
13 4	-0	23	0.38
14 5	0	24	0.38
15 1	6	25	0.38
16 1	7	26	0.38
17 1	.8	20	0.38
18 1	9	30	0.38
19 2	20	40	0.38
20 2	20	50	0.38
21 2	20	60	0.38
22 2	23	70	0.38
23 2	24	80	0.38
24 2	2.5	90	0.38
25 2	26	100	0.38
26 2	27	110	0.38
27 2	28	120	0.38
28 2	.9	130	0.38
29 1	0	35	0.38
30 2	20	75	0.38

Формулы для вычисления показателей:

1.
$$K_{2U} = \frac{U_2}{U_I} 100 \%$$
,

где U_2 - действующее значение напряжения обратной последовательности основной гармоники,

 U_{I} - действующее значение напряжения прямой последовательности основной гармоники,

2.
$$K_{\theta U} = \frac{\sqrt{3}U_{\theta}}{U_{I}} 100 \%$$
,

где U_{θ} - действующее значение напряжения нулевой последовательности основной гармоники.

Задача 3

Определить значения T_1 и T_2 по результатам k измерений суммарного коэффициента гармоник в точке присоединения к сети, расположенной на шинах 10 кВ, из которых m значений вышли за нормативное значение, установленное для 95% времени интервала измерений, n значений вышли за нормативное значение, установленное для 100% времени измерений. Вычисленные значения T_1 и T_2 сопоставить с требованиями ГОСТ 32144-2013. Результаты измерений приведены в табл.3. Общее количество измерений k =1440.

Вариант	m	n	Вариант	m	n	Вариант	m	n
1	100	0	11	10	10	21	100	10
2	110	10	12	110	10	22	110	110
3	200	20	13	250	00	23	200	25
4	210	30	14	300	10	24	210	0
5	300	5	15	50	100	25	300	50
6	330	1	16	10	30	26	330	10
7	400	100	17	100	40	27	400	0
8	440	0	18	0	440	28	440	0
9	50	3	19	350	50	29	50	350
10	150	0	20	0	150	30	150	0

Таблина 3

При оценке качества электрической энергии определяются продолжительности T_1 и T_2 выхода фактических значений показателей качества электроэнергии за нормативные значения. В соответствии с ГОСТ 32144-2013 T_1 не должно выходить за 5%, а T_2 - за 0%. Значения T_1 и T_2 вычисляются по формулам:

$$T_1 = \frac{m}{k} * 100 \% \text{ M } T_2 = \frac{n}{k} * 100 \%,$$

где k - общее число измерений за время измерений;

- \emph{m} число измерений, при которых значения измеряемого показателя качества электроэнергии превосходят допустимое значение для 95% времени измерений, установленное в ГОСТ 32144-2013, но не превосходят допустимого значения для 100% времени измерений;
- n число измерений, при которых значения измеряемого показателя качества электроэнергии превосходят допустимое значение для 100% времени измерений, установленное в ГОСТ 32144-2013.

Задача 4

Определить на какую величину возрастет напряжение на шинах низкого напряжения трансформатора после включения конденсатора в схеме сети, состоящей из электрической системы, линии и трансформатора. Конденсатор присоединяется на шины низкого напряжения U_{HH} . Параметры схемы приведены в табл.4. Все сопротивления приведены к напряжению U_{BH} .

Таблица 4. Параметры элементов схемы для задачи 4

Вариант	Вариант X_{cuc} , Ом		X_{mp} , Om	<i>U _{вн}</i> , кВ	<i>U _{нн}</i> , кВ	Q_K , MBAp	
1	3	X _{лин} , Ом 28	86.7	115	6.6	10	
2	2	35	86.7	115	11	15	
3	4	40	55.9	115	10.5	17	
4	5	24	55.9	115	6.3	19	
5	6	26	43.5	115	10.5	10	
6	7	32	43.5	115	10.5	13	
7	8	33	34.8	115	6.3	15	
8	9	37	34.8	115	10.5	17	
9	10	42	17.3	121	6.3	18	
10	3	44	17.3	121	10.5	20	
11	4	46	11.1	121	10.5	21	
12	5	48	6.95	121	10.5	23	
13	6	50	55.9	115	10.5	24	
14	7	52	55.9	115	6.3	20	
15	8	56	43.5	115	10.5	10	
16	9	30	43.5	115	10.5	11	
17	10	32	34.8	115	10.5	12	
18	3	34	86.7	115	6.6	13	
19	4	36	86.7	115	11	14	
20	5	38	55.9	115	10.5	15	
21	6	40	55.9	115	6.3	16	
22	8	42	43.5	115	10.5	17	
23	9	44	43.5	115	10.5	18	
24	10	45	34.8	115	6.3	19	
25	5	47	34.8	115	10.5	20	
26	6	49	17.3	121	6.3	21	
27	7	51	17.3	121	10.5	22	
28	7	53	11.1	121	10.5	23	
29	8	27	6.95	121	10.5	24	
30	9	29	43.5	115	10.5	25	

Увеличение напряжения определяется по формуле $\Delta U = \frac{Q_K X_{\Sigma}}{U_{HH}} (\frac{U_{HH}^2}{U_{BH}^2})$, где X_{Σ} сопротивление между источником питания и интересуемой точкой сети, т.е. $X_{\Sigma} = Xcuc + Xnuh + Xmp$.

На понизительной подстанции предприятия установлен двухобмоточный трансформатор с параметрами S_{nom} , U_{BH} , U_{HH} , ΔP_K , U_K . На стороне обмоток высокого напряжения установлены регулировочные ответвления, диапазон регулирования напряжения $\pm (n_p \Delta U\%)$. Нагрузка на зажимах обмотки низкого напряжения трансформатора S_2 . Напряжение на зажимах обмотки высокого напряжения трансформатора U_1 . Определить, при каких значениях коэффициента трансформации и на каком ответвлении напряжение на шинах низкого напряжения будет равным U_{2m} . Численные значения параметров приведены в табл.5. При решении задачи потерями мощности в трансформаторе пренебречь.

Таблица 5

Вари-	S_{nom} ,	U_{BH} ,	U_{HH} ,	ΔP_{K} ,	U_K ,	$\pm (n_p \Delta U_p),$	S_2 ,	U_{1} ,	U_{2m} ,
ант	MBA	кВ	кВ	кВт	%	%	MBA	кВ	кВ
1	10	10.5	6.3	96	14.4	10×1.5	8+j3	11	6.5
2	6.3	35	6.3	46.5	7.5	6×1.5	4+j2	36	6.6
3	10	36.75	6.3	65	8.0	8×1.5	9+j2	38	6.5
4	10	36.75	6.3	85	14.0	8×1.5	7+j4	38	6.7
5	10	36.75	10.5	65	8.0	8×1.5	9+j2	38	10.7
6	16	36.75	6.3	90	8.0	8×1.5	10+j6	39	6.6
7	16	36.75	10.5	90	8.0	8×1.5	9+j6	39	10.4
8	25	36.75	6.3	145	9.5	8×1.5	15+j9	39	6.6
9	10	10.5	6.3	96	14.4	10×1.5	7+j2	11	6.5
10	25	36.75	10.5	145	9.5	8×1.5	17+j5	39	10.6
11	6.3	35	10.5	46.5	7.5	6×1.5	3+j1	37.	10.7
12	6.3	35	6.3	46.5	7.5	6×1.5	3+j2.	36	6.7
13	10	36.75	6.3	65	8.0	8×1.5	7+j2	38	6.6
14	10	36.75	6.3	85	14.0	8×1.5	9+j1	38	6.5
15	10	36.75	6.3	65	8.0	8×1.5	8+j3	35	6.6
16	16	36.75	6.3	90	8.0	8×1.5	9+j6	38	6.5
17	16	36.75	10.5	90	8.0	8×1.5	7+j6	38	10.6
18	25	36.75	6.3	145	9.5	8×1.5	16+j9	39	6.5
19	10	10.5	6.3	96	14.4	10×1.5	6+j1	11	6.4
20	25	36.75	10.5	145	9.5	8×1.5	18+j5	39	10.6
21	6.3	35	10.5	46.5	7.5	6×1.5	5+j1	36.5	10.8
22	6.3	35	6.3	46.5	7.5	6×1.5	5+j1	36.5	6.5
23	10	36.75	6.3	65	8.0	8×1.5	8+j3	37	6.4
24	10	36.75	6.3	85	14.0	8×1.5	6+j2	38	6.5
25	10	36.75	6.3	65	8.0	8×1.5	7+j4	34	6.7
26	16	36.75	6.3	90	8.0	8×1.5	10+j5	39	6.5
27	16	36.75	10.5	90	8.0	8×1.5	8+j6	39	10.2
28	25	36.75	6.3	145	9.5	8×1.5	13+j9	39	6.5
29	10	10.5	6.3	96	14.4	10×1.5	8+j4	11	6.6
30	25	36.75	10.5	145	9.5	8×1.5	15+j9	38	10.6

Алгоритм решения задачи следующий:

1. Вычисление параметров схемы замещения двухобмоточного трансформатора:

$$R_{mp} = \frac{\Delta P_K U_{BH}^2}{S_{nom}^2}$$
 - активное сопротивление,

$$X_{mp} = \frac{U_K U_{BH}^2}{100 S_{HOM}}$$
 - индуктивное сопротивление;

2. Вычисление потерь напряжения в трансформаторе от протекания мощности нагрузки $(S_2 = P_2 + jQ_2)$, приведенных к напряжению обмотки высокого напряжения трансформатора:

$$\Delta U = \frac{P_2 R_{mp} + Q_2 X_{mp}}{U_I};$$

3. Вычисление напряжения на вторичной стороне трансформатора, приведенного к первичной с учетом потерь напряжения в трансформаторе:

$$U_{2}^{'}=U_{1}-\Delta U$$
.

4. Вычисление величины напряжения регулировочного ответвления U_{omeBH} , которое обеспечит на вторичной стороне трансформатора напряжение U_{omeBH} :

$$U_{omeBH} = \frac{U_{2}^{'}U_{HH}}{U_{2K}};$$

5. Вычисление номера регулировочного ответвления, соответствующего вычисленному напряжению U_{omsBH}

$$n_p = \frac{\frac{U_{omoBH}}{U_{BH}} - 1}{\Delta U_p}$$
 , полученное значение округляется до ближайшего стандартного из

табл.5;

6. Вычисление величины напряжения ответвления, соответствующей номеру стандартного ответвления, определенному в пункте 5

$$U_{omeBHcm} = U_{BH} (1 \pm n_p \Delta U_p);$$

7. Вычисление коэффициента трансформации трансформатора для выбранного регулировочного ответвления:

$$K_{mp} = \frac{U_{omsBHcm}}{U_{HH}};$$

8. Вычисление напряжения на низкой стороне трансформатора с выбранным регулировочным ответвлением

$$U_{2} = \frac{U_{2}'}{K_{mp}}.$$

Сделать вывод по результатам вычислений.