ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

	СОГЛАСОВАН	IO:		УТВЕР	ЖДАЮ:					
	Выпускающая		кафедр	ра Прорек	гор - директор	Российской				
«Экс	ономическая теори	ія и менеджме	ент»	открытой акад	емии транспорта	a				
	Зав.		кафедро	рй						
		_T.M.	Степаня	пн	B.W	 Апатцев 				
(подпи	ісь,		Ф.И.О	О.) (подпись,		Ф.И.О.)				
«	»	_20 г.		«»	20	Γ.				
		Кафедра:		и прикладная ма	атематика»					
	Авторы: Карпух			доцент; Садыког	за О.И., к.пед.н.,	доцент				
	КОНТРО	ОЛЬНЫЕ РАІ	БОТЫ 1 И	І 2 УЧЕБНОЙ Д	ИСЦИПЛИНЫ					
				льных решений						
				•						
	(название дисциплины)									
	Направление/сп	ециальность:		38.03.01		Экономика				
(код,		наименование		специальности	Í	/направления)				
Прос	филь/специализаці	<i>ия:</i>				BCE				
Квал	ификация		вып	ускника:		бакалавр				
Фор.	ма обучения: заоч	ная								
	Одобрена	на за	седании	Одобрена	на заседани	и кафедры				
				-						
Уче(бно-методической	комиссии	POAT	Высшая и	прикладная	математика»				
	бно-методической гокол		POAT « №I		прикладная	математика» <u>№</u>				
Проз			№ I	Іротокол	-					
Прот « _ Пред	гокол	20	№ Г.«	Протокол	-	№				

Москва 20 ___ г.

Контрольная работа № 1

Задача 1

1-10. Для производства двух видов изделий A и B используется три типа технологического оборудования. Для производства единицы изделия Aоборудование первого типа используется а часов, оборудование второго типа – а, часов, оборудование третьего типа – а, часов. Для производства единицы изделия B оборудование первого типа используется b часов, оборудование второго типа -b, часов, оборудование третьего типа -b, часов. Ha изготовление всех изделий предприятие может использовать оборудование первого типа не более, чем t_1 часов, второго типа не более, чем t_{2} часов, третьего типа не более, чем t_{3} часов. Прибыль от реализации готового изделия A составляет α денежных единиц, а изделия B — β денежных единиц. Составить план производства изделий A и B, обеспечивающий максимальную прибыль от их реализации. Решить задачу графическим и аналитическим симплексным методом.

№ задания	a_1	a_2	a_3	b_{I}	b_2	b_3	t_{I}	t_2	t_3	α	β
1	1	1	4	1	2	1	20	36	56	2	3
2	2	1	7	2	2	1	40	34	98	2	3
3	3	1	5	3	2	1	60	32	80	2	3
4	1	1	2	1	2	1	24	40	38	2	3
5	2	1	3	2	2	1	48	38	54	2	3
6	2	2	1	1	2	2	30	40	36	3	2
7	7	1	1	1	2	1	98	34	20	5	2
8	1	3	5	2	3	1	32	60	80	4	2
9	1	3	1	2	1	1	40	54	24	3	2
0	4	2	1	1	2	2	72	48	38	3	1

Задача 2

11-20. Имеются три пункта отправления A_1 , A_2 , A_3 однородного груза и пять пунктов B_1 , B_2 , B_3 , B_4 , B_5 его назначения. На пунктах A_1 , A_2 , A_3 груз находится в количестве a_1 , a_2 , a_3 единиц соответственно. В пункты B_1 , B_2 , B_3 , B_4 , B_5 требуется доставить соответственно b_1 , b_2 , b_3 , b_4 , b_5 единиц груза. Тарифы на перевозку груза между пунктами отправления и назначения приведены в матрице D.

Составить план перевозок, при котором общие затраты на перевозку грузов будут минимальными.

Указание: для решения задачи использовать методы минимальной стоимости и потенциалов.

1.
$$a_1 = 50$$
, $a_2 = 70$, $a_3 = 110$,

1. $a_1 = 50$, $a_2 = 50$, $a_3 = 50$, $a_4 = 50$, $a_5 = 30$,

 $a_1 = 90$, $a_2 = 70$, $a_3 = 110$,

2. $a_1 = 70$, $a_2 = 20$, $a_3 = 70$, $a_4 = 40$, $a_5 = 70$,

 $a_1 = 60$, $a_2 = 40$, $a_3 = 80$,

3. $a_1 = 10$, $a_2 = 50$, $a_3 = 100$,

4. $a_1 = 40$, $a_2 = 60$, $a_3 = 100$,

4. $a_1 = 40$, $a_2 = 60$, $a_3 = 100$,

4. $a_1 = 40$, $a_2 = 60$, $a_3 = 70$,

 $a_1 = 50$, $a_2 = 30$, $a_3 = 70$,

 $a_1 = 100$, $a_2 = 70$, $a_3 = 50$,

6. $a_1 = 60$, $a_2 = 70$, $a_3 = 50$,

 $a_1 = 70$, $a_2 = 50$, $a_3 = 90$,

 $a_1 = 10$, $a_2 = 50$, $a_3 = 90$,

 $a_1 = 10$, $a_2 = 40$, $a_3 = 80$,

8. $a_1 = 10$, $a_2 = 60$, $a_3 = 10$, $a_3 = 80$,

 $a_1 = 60$, $a_2 = 40$, $a_3 = 80$,

 $a_1 = 60$, $a_2 = 40$, $a_3 = 80$,

 $a_1 = 60$, $a_2 = 40$, $a_3 = 80$,

 $a_1 = 60$, $a_2 = 40$, $a_3 = 80$,

 $a_1 = 60$, $a_2 = 20$, $a_3 = 30$, $a_3 = 40$, $a_3 = 80$,

 $a_1 = 60$, $a_2 = 40$, $a_3 = 80$,

 $a_1 = 60$, $a_2 = 40$, $a_3 = 80$,

 $a_1 = 60$, $a_2 = 40$, $a_3 = 80$,

 $a_1 = 60$, $a_2 = 20$, $a_3 = 30$, $a_3 = 40$, $a_3 = 4$

$$a_1 = 70, \ a_2 = 50, \ a_3 = 90,$$

$$0. \qquad b_1 = 60, \ b_2 = 10, \ b_3 = 10, \ b_4 = 60, \ b_5 = 70,$$

$$D = \begin{pmatrix} 7 & 1 & 7 & 4 & 9 \\ 4 & 1 & 1 & 1 & 5 \\ 5 & 6 & 6 & 8 & 2 \end{pmatrix}.$$

Контрольная работа № 2

Задача 1

- 21-30. В задаче выпуклого программирования требуется:
- 1) найти решение графическим методом,
- 2) написать функцию Лагранжа и найти ее седловую точку, используя решение, полученное графически.

21.
$$x_1^2 + x_2 - 2^2 \rightarrow \min,$$

$$\begin{cases} 2x_1 + x_2 \ge 7, \\ x_1 + 2x_2 \ge 5, \\ x_1 \ge 1, x_2 \ge 0. \end{cases}$$

23.
$$x_1 - 7^2 + x_2 - 1^2 \rightarrow \min,$$

$$\begin{cases} 7x_1 + 4x_2 \le 43, \\ 5x_1 - x_2 \ge -4, \\ x_1 - 2x_2 \le 1, \\ x_1 \ge 0, x_2 \ge 0. \end{cases}$$

25.
$$x_1 - 5^2 + x_2 - 10^2 \rightarrow \min,$$

$$\begin{cases} x_1 + x_2 \le 11, \\ 4x_1 - x_2 \le 4, \\ x_1 \ge 0, x_2 \ge 0. \end{cases}$$

27.
$$x_1 - 4^2 + x_2 - 10^2 \rightarrow \min,$$

$$\begin{cases} 3x_1 - x_2 \ge 0, \\ x_1 + x_2 \le 8, \\ x_1 - 2x_2 \le 0, \\ x_1 \ge 0, x_2 \ge 0. \end{cases}$$

22.
$$x_1 - 10^2 + x_2 - 2^2 \rightarrow \min,$$

$$\begin{cases} x_1 - 3x_2 \le 0, \\ 2x_1 + x_2 \ge 4, \\ x_1 \ge 0, x_2 \ge 0. \end{cases}$$

24.
$$x_{1}-9^{2}+x_{2}-6^{2} \rightarrow \min,$$

$$\begin{cases} x_{1}-5x_{2} \leq 0, \\ x_{1}+2x_{2} \leq 16, \\ 2x_{1}+x_{2} \geq 11, \\ x_{1} \geq 0, x_{2} \geq 0. \end{cases}$$

26.
$$x_1 - 6^2 + x_2 - 9^2 \rightarrow \min$$
,

$$\begin{cases} 2x_1 + x_2 \le 16, \\ 5x_1 - x_2 \ge 0, \\ x_1 + 2x_2 \ge 11, \\ x_1 \ge 0, x_2 \ge 0. \end{cases}$$
28. $x_1 - 7^2 + x_2 - 8^2 \rightarrow \min$.

$$\begin{cases} x_1 - 7 + x_2 - 8 & \rightarrow \min, \\ x_1 - 2x_2 \le 0, \\ 3x_1 - x_2 \ge 0, \\ x_1 + x_2 \le 11, \\ x_1 \ge 0, x_2 \ge 0. \end{cases}$$

$$29. \qquad x_1 - 5 \stackrel{?}{=} + x_2 - 1 \stackrel{?}{=} + \min \,, \qquad \qquad 30. \qquad x_1 - 6 \stackrel{?}{=} + x_2 - 5 \stackrel{?}{=} + \min \,, \\ \begin{cases} 2x_1 - x_2 \ge -4, \\ 2x_1 - 3x_2 \le -6, \\ x_1 + x_2 \le 11, \\ x_1 \ge 0, \ x_2 \ge 0. \end{cases} \\ \begin{cases} x_1 - 5x_2 \le 0, \\ x_1 + 2x_2 \le 11, \\ 3x_1 + x_2 \le 18, \\ x_1 \ge 0, \ x_2 \ge 0. \end{cases}$$

Задача 2

31-40. Для двух предприятий выделено a единиц средств. Как распределить все средства в течение 4 лет, чтобы доход был наибольшим, если известно, что доход от x единиц средств, вложенных в первое предприятие, равен f_1 x, а доход от y единиц средств, вложенных во второе предприятие, равен f_2 y. Остаток средств x концу года составляет y y для первого предприятия и y y для второго предприятия. Задачу решить методом динамического программирования.

№ задания	а	f_1	<i>g</i> ₁	f_2	g_2
31	600	5 x	0,2x	3 <i>y</i>	0,6 y
32	800	4 <i>x</i>	0,2x	3 <i>y</i>	0,5 y
33	700	4 <i>x</i>	0,3x	3 y	0,5 y
34	1000	3 <i>x</i>	0,1 <i>x</i>	2 y	0,5 y
35	900	2 <i>x</i>	0,1 <i>x</i>	у	0,3 y
36	1800	х	0,3 <i>x</i>	2 y	0,1 y
37	2000	2 <i>x</i>	0,5 <i>x</i>	3 y	0,1 y
38	1400	3 <i>x</i>	0,5x	4 y	0,3 y
39	1600	3 <i>x</i>	0,5 <i>x</i>	4 y	0,2 y
40	1200	3 <i>x</i>	0,6x	5 y	0,2 y