ЗАДАЧИ К КОНТРОЛЬНОЙ РАБОТЕ

ЗАДАЧА 1

Определить аналитическим и графическим способами усилия в стержнях АВ и ВС

заданной стержневой системы.

Вариант	F ₁ , кH F ₂ , кH		α2, град	αз, град
6	21	38	60°	30 °
1		6 Jai		
2	1.3	7	J.3	
3	12 12	8 2	Y.1 4	
4	1.2 L ₂	9	7.7	
5		10	J.3 C	

ПРИМЕР 1

Определить аналитическим и графическим способами в стержнях АВ и ВС заданной стержневой системы (рисунок 1).

Дано: $F_1 = 28$ кH; $F_2 = 42$ кH; $\alpha_1 = 45^{\circ}$; $\alpha_2 = 60^{\circ}$; $\alpha_3 = 30^{\circ}$.

Определить: усилия $\bar{S}_A \ u \ \bar{S}_C$

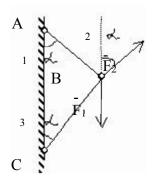


Рисунок -1

РЕШЕНИЕ

1 Аналитическое решение

- 1 Рассматриваем равновесие точки В, в которой сходятся все стержни и внешние силы (рисунок 1).
- 2 Отбрасываем связи AB и BC, заменяя их усилиями в стержнях S_A и \bar{S}_C . Направления усилий примем от угла B, предполагая стержни растянутыми. Выполним на отдельном чертеже схему действия сил в точке B (рисунок 2).
- 3 Выбираем систему координат таким образом, чтобы одна из осей совпадала с неизвестным усилием, например, с \bar{S}_A . Обозначаем на схеме углы, образованные действующими силами с осью X и составляем углы, образованные действующими силами с осью X и составляем уравнения равновесия плоской системы сходящихся сил:

$$\Sigma F_{RX} = 0; F_{2}\cos 75^{0} + F_{1}\cos 45^{0} + S_{c}\cos 75^{0} - S_{A} = 0 (1);$$

$$\Sigma F_{RY} = 0; F_{2}\cos 15^{0} - F_{1}\cos 45^{0} - S_{c}\cos 15^{0} = 0 (2).$$

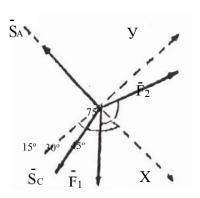


Рисунок - 2

Из уравнения (2) находим усилие Sc:

$$S_c = \frac{F_2 \cos 15^0 - F_1 \cos 45^0}{\cos 15^0}$$

Подставляем числовые значения:

$$S_c = \frac{42*0.966 - 28*0.707}{0.966} \approx 21.51 \,\kappa H$$

Найденное значение Sc подставляем в уравнение (1) и находим из него значение SA:

$$S_A = F_2 \cos 75^0 + F_1 \cos 45^0 + S_C \cos 75^0$$
 или
$$S_A = 42*0,259+28*0,707+21,51*0,259=36,24 \text{ кH}.$$

Окончательно $S_A = 36,24$ кH, $S_c = 21,51$ кH; знаки указывают, что оба стержня растянуты.

2 Графическое решение

Выбираем масштаб сил $m=10\frac{kH}{cM}$, тогда силы $\bar{F}_1u\ \bar{F}_2$ будут откладываться отрезками $F_1^m=\frac{F_1}{m}=\frac{28}{10}=2.8\ cm$; $F_2^m=\frac{F_2}{m}=\frac{42}{10}=4.2\ cm$.

Из произвольно выбранной точки 0 откладываем отрезок, соответствующий величине и направлению силы \bar{F}_1 . Из конца этого отрезка откладываем отрезок F_2^m . Так как условием равновесия сходящейся системы сил является замкнутость силового многоугольника, то из начала отрезка F_1^m откладываем линию, параллельную вектору \bar{S}_c , а из конца отрезка F_2^m откладываем линию, параллельную вектору \bar{S}_A . Точка их пересечения является вершиной силового многоугольника (рисунок 3).

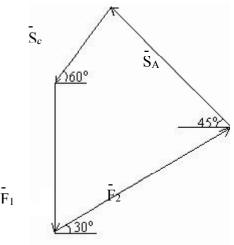


Рисунок - 3

Измеряя отрезки $S_{\scriptscriptstyle A}^{\scriptscriptstyle m}$ и $S_{\scriptscriptstyle C}^{\scriptscriptstyle m}$ и, умножая их на масштаб находим значения $S_{\scriptscriptstyle A}$ и $S_{\scriptscriptstyle C}$:

$$S_A = S_A^m * m = 3.65 * 10 = 36.5 kH$$
;

$$S_c = S_c^m * m = 2.15 * 10 = 21.5 kH$$
.

Вычислим допущенную при графическом способе решения ошибку:

$$S_A = \frac{36.5 - 36.24}{36.24} * 100\% \approx 0.72\%;$$
$$S_C = \frac{21.51 - 21.5}{21.51} * 100\% \approx 0.05\%.$$

(Ошибка находится в пределах 2%).

Ответ:

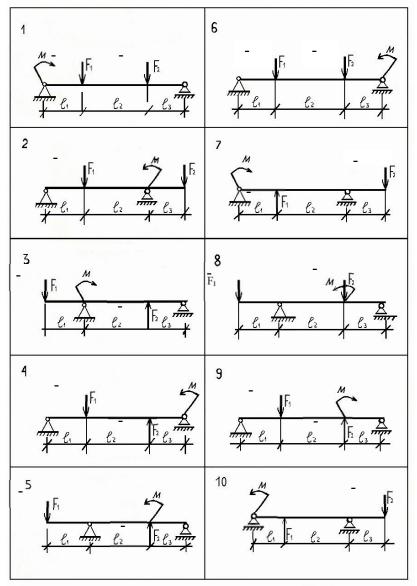
а) аналитическое решение:

$$S_A = 36.24 \, kH; \, S_C = 21.51 \, \kappa H$$

б) графическое решение:

$$S_A = 36.5 \, kH; S_c = 21.5 \, kH.$$

ЗАДАЧА 2 Для двухопорной балки определить реакции опор



Вариант	F ₁ , кН	F ₂ , κH	М, кНм	ℓ ₁ , м	ℓ ₂ , м	ℓ3, M
6	30	45	40	1,0	4,0	5,0

ПРИМЕР 2 Определить реакции опор двухопорной балки (рисунок - 4)

Дано: F_1 =24 кH; F_2 =36 кH; m_1 =18 кНм; m_2 =24 кНм; ℓ_1 =2,0 м; ℓ_2 =3,0 м; ℓ_3 =3,0 м

Определить реакции опор R_{AУ} и R_{BУ}

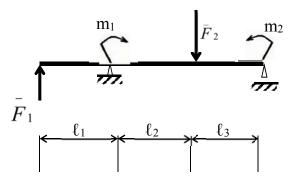


Рисунок - 4

Решение:

1 Обозначаем опоры буквами A и B. Отбрасываем связи (опоры A и B), заменяем их действие реакциями. Так как задана параллельная система сил, то реакции в опорах будут только вертикальные A и B. Выбираем систему координат XУ с началом в левой опоре и чертим расчетную схему балки (рисунок 5)

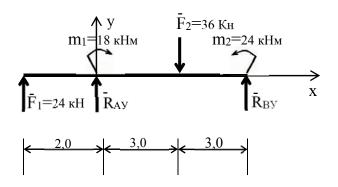


Рисунок - 5

2 Для полученной плоской параллельной системы сил составляем уравнение равновесия:

$$\Sigma M_{A} \left(\bar{F}_{R} \right) = 0 \qquad F_{1} * 2.0 + m_{1} + F_{2} * 3.0 - m_{2} - R_{B}y * 0,6 = 0$$

$$\Sigma M_{B} \left(\bar{F}_{R} \right) = 0 \qquad F_{1} * 8,0 + m_{1} + R_{A}y * 6.0 - F_{2} * 3.0 - m_{2} = 0$$

$$(4)$$

3 Решаем систему уравнений.

Из уравнения (3) находим $R_{\rm BY}$:

RBy =
$$\frac{F_1 * 2.0 + m_1 + F_2 * 3.0 - m_2}{6.0} = \frac{48 + 18 + 108 - 24}{6.0} = \frac{150}{6} = 25 \ \kappa H$$

Из уравнения (4) находим R_{Ay} :

$$R_{AV} = \frac{-F_1 * 8.0 - m_1 + F_2 * 3.0 + m_2}{6.0} = \frac{-192 - 18 + 108 + 24}{6} = -13 \, kH$$

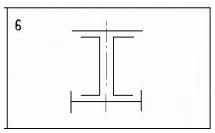
4 Для проверки правильности решения составим сумму протекций всех сил на ось У

$$\Sigma F_{RY} = F_1 + R_{AY} - F_2 + R_{BY} = 24 - 13 - 36 + 25 = 49 - 49 = 0$$

то есть реакции определены верно.

ЗАДАЧА 3

Для заданных сечений, состоящих из прокатных профилей и полосы $b \times h$, определить положение центра тяжести.



Вариант	Двутавр	b, см	h, м	Швеллер
6	20	24,0	1,8	22a

ПРИМЕР 3.

Определить координаты центра тяжести сечения. Сечение состоит из двутавра № 18, швеллера № 18 и пластины 200*60 (рисунок-6)

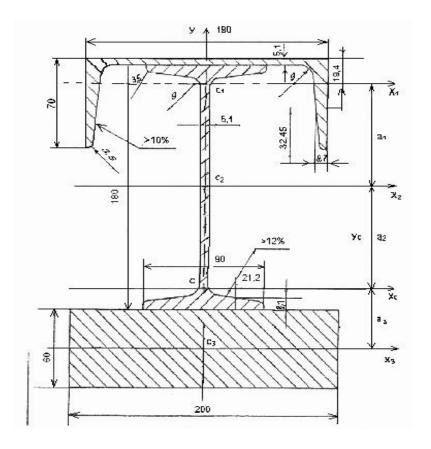


Рисунок - 6

- 1 Разобьем сечение на профили проката. Оно состоит из двутавра № 18, швеллера № 18 и пластины 200*60. обозначим их 1, 2, 3.
- 2 Укажем центры тяжести каждого профиля, используя таблицу приложения, и обозначим их C_1 , C_2 , C_3 , проведем через них оси X_1 , X_2 , X_3 .
- 3 Выберем систему координатных осей. Ось Y совместим с осью симметрии, а ось X проведем через центр тяжести двутавра.
- 4 Определим центр тяжести всего сечения. Так как ось Y совпадает с осью симметрии, то она проходит через центр тяжести сечения, потому Xc=0. Координату Yc определим по формуле:

$$Y_c = \frac{A_1 y_1 + A_2 y_2 + A_3 y_3}{A_1 + A_2 + A_3}$$

Пользуясь таблицами ГОСТ 8239-89, ГОСТ 8240-89, ГОСТ 8510-86, ГОСТ 8509-86, определим координаты центров тяжести

$$A_{1} = 20.7 \text{ cm}^{2}$$

$$y_{1} = \left(\frac{h_{2}}{2} + d_{1} - z_{0}\right) = \frac{18}{2} + 0.51 - 1.94 = 7.57 \text{ cm}$$

$$A_{2} = 23.4 \text{ cm}^{2}$$

$$y_{2} = 0$$

$$A_{3} = 20*6 = 120 \text{ cm}^{2}$$

$$y_{3} = -\left(\frac{h_{2}}{2} + \frac{h_{3}}{2}\right) = -\left(\frac{18}{2} + \frac{6}{2}\right) = -12 \text{ cm}$$

Координата y_2 равна нулю, так как ось X проходит через центр тяжести двутавра. Подставим полученные значения в формулу для определения y_C :

$$y_C = \frac{20.7*7.57 + 23.4*0 + 120*(-12)}{20.7 + 23.4 + 120} = -7.82 \text{ cm}$$

- 1 Укажем центр тяжести сечения на рисунке и обозначим его буквой С. Покажем расстояние $y_C = -7.82$ см от оси X до точки С.
- 2 Определим расстояние между точками С и С1, С и С2, С и С3, обозначим их а1, а2, а3:

$$a_1 = y_1 + y_C = 7,57 + 7,82 = 15,39 \text{ cm}$$

 $a_2 = y_C = 7,82 \text{ cm}$
 $a_1 = y_3 - y_C = 12 - 7,82 = 4,18 \text{ cm}$

3 Выполним проверку. Для этого ось X проведем по нижнему краю пластины. Ось Y оставим, как в первом решении. Формулы для определения x_C и y_C не изменятся:

$$\mathbf{x}_{\mathrm{C}} = 0,$$
 $\mathbf{y}_{\mathrm{C}} = \frac{A_{1}y_{1} + A_{2}y_{2} + A_{3}y_{3}}{A_{1} + A_{2} + A_{3}}$

Площади профилей останутся такими же, а координаты центров тяжести двутавра, швеллера и пластины изменятся.

$$A_1 = 20.7 \text{ cm}^2$$
 $y_1 = (h_3 + h_2 + d_1 - z_0) = 6 + 18 + 0.51 - 1.94 = 22.57 \text{ cm}$
 $A_2 = 23.4 \text{ cm}^2$ $y_2 = h_3 + \frac{h_2}{2} = 6 + \frac{18}{2} = 15 \text{ cm}$
 $A_3 = 20*6 = 120 \text{ cm}^2$ $y_3 = \frac{h_3}{2} = \frac{6}{2} = 3 \text{ cm}$

Находим координату центра тяжести:

$$y_C = \frac{20.7*22.57+23.4*15+120*3}{20.7+23.4+120} = 7.18 \text{ cm}$$

По найденным координатам x_C и y_C наносим на рисунок точку C. Найденное двумя способами положение центра тяжести находится в одной и той же точке. Сумма координат y_C , найденных при первом и втором решении: 7.82 + 7.18 = 15 см

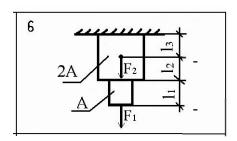
Это равно расстоянию между осями Х при первом и втором решении:

$$18/2 + 6 = 15$$
 cm.

ЗАДАЧА 4

По оси ступенчатого бруса приложены силы $\overline{F_1}$ и $\overline{F_2}$. Необходимо построить эпюры продольных сил и нормальных напряжений, определить абсолютную деформацию бруса. Принять $E=2,1*10^5$ МПа.

Вариант	F ₁ , кН	F ₂ , кН	<i>l</i> ₁ , м	l ₂ , M	<i>l</i> 3, м	А, см ²
6	30	57	2,0	1,4	1,2	6,5



ПРИМЕР 4

Для данного ступенчатого бруса построить эпюры продольных сил и нормальных напряжений. Определить абсолютное удлинение (укорочение) бруса (рисунок 7)

Дано:

$$F_1 = 28 \; kH$$
 , $F_2 = 64 \; kH$, $\ell_1 = 2,4$ м, $\ell_2 = 2,2$ м, $\ell_3 = 2,0$ м, A=3,2 см 2 , E=2,1*10 5 МПа



Решение

1 Проводим ось Z в сторону свободного конца бруса и определяем реакцию заделки \overline{V} :

$$\Sigma F_{RZ} = F_1 - F_2 + V = 0;$$

 $V = -F_1 + F_2 = -28 + 64 = 36 \text{ kH}.$

2 Разбиваем брус на участки, границы которых определяются сечениями, где изменяется площадь поперечного сечения или приложены внешние силы. На каждом из участков проводим характерные сечения 1-1, 2-2, 3-3. С помощью метода сечений определяем продольные силы на каждом из участков бруса: мысленно рассекаем брус в пределах первого участка сечения 1-1, отбрасываем верхнюю часть бруса и заменяем ее действие продольной силой N_1 (рисунок 7) для оставшейся части составляем уравнение равновесия:

$$\Sigma F_{RZ} = F_1 - N_1 = 0; N_1 = F_1 = 28 kH.$$

Аналогично находим N₂ и N₃:

сечение 2-2 (рисунок 7)

$$\Sigma F_{RZ} = F_1 - N_2 = 0$$
; $N_2 = F_1 = 28 \, kH$;

сечение 3-3 (рисунок 7)

$$\Sigma F_{RZ} = F_1 - F_2 - N_3 = 0, N_3 = F_1 - F_2 = 28 - 64 = 36 \, kH$$
.

По найденным значениям продольной силы строим соответствующую эпюру. Для этого параллельно оси бруса проведем базовую (нулевую) линию. Левее ее откладываем отрицательные значения N, соответствующие сжатому участку, а правее – положительные значения N, соответствующие растянутому участку (рисунок - 7).

Определяем нормальные напряжения в характерных сечениях бруса по формуле: $\sigma = \frac{N}{4}$;

$$\sigma_1 = \frac{N_1}{A} = \frac{28*10^3 H}{3.2*10^2 mm^2} = 87.5 \frac{H}{mm^2} = 87.5 M\Pi a;$$

$$\sigma_2 = \frac{N_2}{2A} = \frac{28*10^3 H}{2*3.2*10^2 MM^2} = 43,75 M\Pi a;;$$

$$\sigma_3 = \frac{N_3}{A} = -\frac{36*10^3 H}{3.2*10^2 MM^2} = -112.5 M\Pi a$$
.

Строим соответствующую найденным значениям эпюру σ (рисунок - 7)

4 Определяем абсолютное удлинение бруса.

В соответствии с законом Гука:

$$\Delta \ell = \frac{N * \ell}{E * A} = \sigma \frac{\ell}{E},$$

где $E=2,1*10^5$ МПа — модуль продольной упругости для стали.

Складывая удлинение участков, получим:

$$\Delta \ell = \Sigma \Delta \ell_{k} = \sigma_{1} \frac{\ell_{1}}{E} + \sigma_{2} \frac{\ell_{2}}{E} + \sigma_{3} \frac{\ell_{3}}{E} \quad unu$$

$$\Delta \ell = \frac{1}{E} (\sigma_{1} * \ell_{1} + \sigma_{2} * \ell_{2} + \sigma_{3} * \ell_{3})$$

Учитывая, что I м= 10^3 мм, будем иметь:

$$\Delta \ell = \frac{10^3}{2.1*10^5} (87,5*2,4+43,75*2,2-112,5*2,0)=0,39 \text{ mm}.$$

Таким образом, абсолютное удлинение бруса $\Delta \ell = 0{,}39$ мм.

ЗАДАЧА 5

По данным задачи 2 для двухопорной балки построить эпоры поперечных сил Qy и изгибающих моментов M_x . Подобрать сечение стального двутавра, приняв $[\sigma] = 160 \text{ M}\Pi a$.

ПРИМЕР 5

Для двухопорной балки построить эпюры поперечных сил Q и изгибающих моментов М. Подобрать сечение стального двутавра, приняв $[\sigma] = 160 \text{ M}\Pi a$.

Дано: F_1 =24 kH; F_2 =36 кH; m_1 =18 кНм; m_2 =24 кНм; ℓ_1 =2.0 м; ℓ_2 =3.0 м; ℓ_3 =3.0 м.

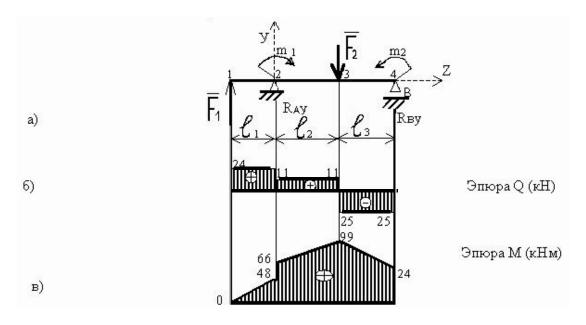


Рисунок - 8

Решение

1 Составляем уравнение равновесия параллельной системы сил, из которых определяем опорные реакции балки:

$$\Sigma M_{A}(\bar{F}_{R}) = F_{1} * 2.0 + m_{1} + F_{2} * 3.0 - m_{2} - R_{BY} * 6.0 = 0;$$

$$\Sigma M_{B}(\bar{F}_{R}) = F_{1} * 8.0 + m_{1} + R_{AY} * 6.0 - F_{2} * 3.0 - m_{2} = 0$$
(5)

Из уравнения (6) находим R_{AY} :

$$R_{AY} = \frac{-F_1 * 8.0 - m_1 + F_2 * 3.0 + m_2}{6.0} = \frac{-192 - 18 + 108 + 24}{6.0} = -\frac{78}{6} = -13 \text{ kH}$$

Из уравнения (5) находим В:

$$R_{BY} = \frac{F_1 * 2.0 + m_1 + F_2 * 3.0 - m_2}{6.0} = \frac{48 + 18 + 108 - 24}{6.0} = \frac{150}{6} = 25 \, kH$$

Проверяем правильность определения опорных реакций, составляя сумму проекций всех сил на ось У:

$$\Sigma F_{RY} = F_1 + R_{AY} - F_2 + R_{RY} = 24 - 13 - 36 + 25 = 49 - 49 = 0$$

то есть реакции определены верно.

2 Определяем значения поперечной силы Q в характерных сечениях балки, которые обозначим цифрами 1, 2, 3, 4 (рисунок 8 а)

$$\begin{array}{c} Q_1 = Q_2^{\text{neb}} = F_1 = 24 \text{ kH}; \\ Q_2^{\text{npab}} = Q_3^{\text{neb}} = F_1 + R_{\text{A}\text{y}} = 24 \text{-} 13 = 11 \text{ kH}; \\ Q_3^{\text{2npab}} = Q_4 = F_1 + R_{\text{A}\text{y}} - F_2 = -R_{\text{B}\text{y}} = \text{-} 25 \text{ kH}. \end{array}$$

По найденным значениям строим эпюру, поперечных сил Q (рисунок 8 б).

3 Аналогично определяем значения изгибающего момента М в характерных сечениях балки:

 $M_1 = 0;$

 $M_2^{\text{лев}} = F_1 * 2.0 = 48 \text{ кНм}$

 $M_2^{\text{прав}} = M_2^{\text{лев}} + m_1 = 48 + 18 = 66 \text{ кHm};$

 $M_3=F_1*5.0+m_1+R_{AY}*3,0=120+18-39=99 \text{ кHm};$

 $M_4=m_2=24$ кНм.

По найденным значениям строим эпюру изгибающих моментов М (рисунок 8 в).

4 По эпюре изгибающих моментов определяем положение опасного сечения балки (сечение, в котором изгибающий момент имеет наибольшее по абсолютной величине значение). В нашем случае

– это сечение 3, где M_3 = M_{max} =99 кНм. Из условия прочности балки на изгиб $\sigma = \frac{M_{max}}{W_x} \le \left[\sigma_u\right]$

вычисляем необходимый осевой момент сопротивления:

$$W_{x} = \frac{M_{\text{max}}}{\left[\sigma_{u}\right]} = -\frac{99*10^{6} H*_{MM}}{160 \frac{H}{_{MM}^{2}}} = 0,619*10^{6} \text{ MM}^{3} = 619 \text{ cm}^{2}.$$

В соответствии с ГОСТ 8239-89 принимаем сечение из стального двутавра № 33 с Wx=597 см³. Имеем перенапряжение:

$$\sigma = \frac{M_{\text{max}}}{W_{\text{v}}} = \frac{99 * 10^6 \, H * _{MM}}{597 * 10^3 \, _{MM}^3} = 165,8 \, M\Pi a$$

$$\sigma = \frac{\sigma_{\text{max}} - [\sigma_u]}{[\sigma_u]} = \frac{165.8 - 160}{160} * 100\% = 3.5\%$$

что находится в разрешенных пределах (менее 5%).

Ответ: сечение балки двутавр № 33.