ДОМАШНЕЕ ЗАДАНИЕ №2 «СЛУЧАЙНЫЕ ПРОЦЕССЫ» ДЛЯ СТУДЕНТОВ ФАКУЛЬТЕТА ФН 3 КУРСА 6 СЕМЕСТРА НА 2015/16 УЧЕБНЫЙ ГОД «ТЕОРИЯ ВЕРОЯТНОСТЕЙ, МАТЕМАТИЧЕСКАЯ СТАТИСТИКА И ТЕОРИЯ СЛУЧАЙНЫХ ПРОЦЕССОВ»

Задача 1. Пусть $\pi_{_t}$ - одномерный пуассоновский процесс с интенсивностью λ .

- 1) Найти функцию распределения случайной величины τ , равной моменту первого попадания процесса π_t во множество G. Построить ее график. Вычислить математическое ожидание τ^{-1} .
- 2) Смоделировать 100 траекторий пуассоновского процесса и по ним построить оценки для λ и для функции распределения τ . Привести графики.

Номер варианта	λ	$G=\{(t,\pi_{_t}):(t,\pi_{_t})\in A\},A:$
1	2.1	$ ([0,2] \times [1.5,3.5]) \cup ([2,3] \times [1.5,2.5]) \cup ([3,4] \times [2.5,3.5]) $
2	1.75	$\left([0,1] \times [1.5,2.5]\right) \cup \left([1,2] \times [2.5,3.5]\right) \cup \left([2,3] \times [1.5,2.5]\right)$
3	0.9	$([1,3] \times [2.5,3.5]) \cup ([3,4] \times [1.5,2.5])$
4	0.4	$([0,3] \times [1.5,2.5]) \cup ([3,4] \times [2.5,3.5])$
5	2.5	$([1,2] \times [0,1.5]) \cup ([2,4] \times [1.5,2.5])$
6	0.8	$ ([0,2] \times [1.5,2.5]) \cup ([2,3] \times [2.5,3.5]) \cup ([3,4] \times [1.5,3.5]) $
7	1.2	$([0,2] \times [2.5,3.5]) \cup ([2,4] \times [1.5,2.5])$
8	1	$([1,2] \times [1.5,2.5]) \cup ([2,4] \times [0,1.5])$
9	0.4	$\left([0,1] \times [2.5,3.5]\right) \cup \left([1,2] \times [1.5,2.5]\right) \cup \left([2,3] \times [0.5,1.5]\right)$
10	1/3	$\left([0,1] \times [3.5,4.5]\right) \cup \left([1,2] \times [1.5,2.5]\right) \cup \left([2,3] \times [2.5,3.5]\right)$
11	1.6	$([0,2] \times [1.5,2.5]) \cup ([3,4] \times [2.5,3.5])$
12	1.9	$([0,2] \times [3.5,4.5]) \cup ([2,4] \times [1.5,2.5])$
13	0.5	$([0,2] \times [2.5,3.5]) \cup ([2,3] \times [0.5,1.5])$
14	2	$([1,2] \times [1.5,3.5]) \cup ([3,4] \times [1.5,3.5])$
15	2.8	$\left([0,1] \times [1.5,2.5]\right) \cup \left([2,4] \times [2.5,4.5]\right)$
16	2/3	$([1,3] \times [0.5,1.5]) \cup ([3,4] \times [1.5,3.5])$
17	1.25	$\left([0,1] \times [1.5,2.5]\right) \cup \left([1,2] \times [2.5,3.5]\right) \cup \left([2,3] \times [0.5,1.5]\right)$
18	1.5	$\Big([0,2] \times [1.5,2.5]\Big) \cup \Big([2,3] \times [2.5,3.5]\Big) \cup \Big([3,4] \times [0.5,1.5]\Big)$
19	2.3	$\left([0,1] \times [1.5,2.5]\right) \cup \left([1,2] \times [2.5,3.5]\right) \cup \left([2,3] \times [3.5,4.5]\right)$
20	3	$([1,3] \times [2.5,3.5]) \cup ([3,4] \times [3.5,4.5])$

Задача 2.

Заданы числовые характеристики случайного процесса ξ_t и линейный оператор L_t . Найти математическое ожидание, дисперсию, корреляционную функцию и спектральную плотность процесса $L_t\eta_t=\xi_t$ и взаимную корреляционную функцию процессов ξ_t и η_t .

$$P = \frac{d}{dt}$$

Номер	Т		V (_)
вар.	$L_{_t}$	m_{ξ}	$K_{\xi}(au)$
1	$P^{2} + 1$	1	$\cos 3 au$
2	$P - P^2$	-2	$e^{-4 au^2}$
3	$P^2 + 2P + 1$	-3	1
			$\overline{4+ au^2}$
4	$-P^2 + 1$	2	$ au^2 e^{-2 au }$
5	$P^2 - 3P + 2$	1.5	$e^{-2 \tau }\cos 2 au$
6	$P^2 + 5P + 4$	-1	$e^{- au }\sin 2 \mid au \mid$
7	$P^2 + 4P + 4$	1	$\sin \tau $
8	$P^2 + 3P + 2$	-1.5	$e^{- au }$
9	$P^2 + 2P$	1	$\cos 2\tau$
10	$P^{2} - 1$	-2	$e^{-9 au^2}$
11	$P^2 - 2P$	2	$\sin 2 \mid \tau \mid$
12	$P + P^2$	-1	$e^{-3 \tau }$
13	$P^2 - 2P + 1$	-1.5	$2\cos au$
14	$P^{2} + 4$	1	$e^{- au^2}$
15	$P^2 - P - 2$	-2	1
			$1+ au^2$
16	$P^2 + P - 2$	2	$ au^2 e^{- au }$
17	$P^2 - 4P + 4$	1	$e^{- \tau }\cos 2\tau$
18	$P^2 + 3P + 2$	-3	$\mathrm{e}^{-2 au }\sin au $
19	$P^2 + 2P - 2$	2	$\sin 3 \mid \tau \mid$
20	$P^{2} - 4$	1.5	$e^{-2 au }$

Задача 3.

Вариант 1,5,9,12,16. В двух ящиках поровну разложено 2n шаров, из которых m белых. На каждом шаге из каждого ящика берут r шаров и меняют местами. Состояние системы в момент t - число белых шаров в первом ящике.

- 1) Найти матрицу вероятностей перехода; вероятности состояний системы за первые 10 шагов, считая в начальный момент времени система находилась в любом возможном состоянии с равными вероятностями.
- 2) Для стационарного режима найти распределение вероятностей, математическое ожидание, дисперсию и ковариационную функцию для ξ_i .
- 3) Оценить скорость сходимости точного распределения к стационарному. По графику разности вероятностей предложить теоретическую оценку для скорости сходимости.

Вариант	n	m	r
1	5	3	1
5	4	3	2
9	5	4	1
13	3	4	2
17	4	4	2

Вариант 2,6,10,14,18. На столе лежит n-угольная пирамида. На основании написано число 0, на остальных гранях - 1-(n-1). Грани с номерами из множества A окрашены. Число на нижней грани в момент времени t обозначим ξ_t . Каждую секунду пирамида опрокидывается с на любую грань, соседнюю с нижней, причем вероятность переворота на окрашенную в r раз больше, чем на неокрашенную; вероятности переворота на все окрашенные (неокрашенные) грани, соседние с нижней, одинаковы. Все опрокидывания независимы между собой. Найти

- 1) Найти матрицу вероятностей перехода; вероятности состояний системы за первые 10 шагов, считая в начальный момент времени система находилась в любом возможном состоянии с равными вероятностями.
- 2) Для стационарного режима найти распределение вероятностей, математическое ожидание, дисперсию и ковариационную функцию для ξ_{t} .
- 3) Оценить скорость сходимости точного распределения к стационарному. По графику разности вероятностей предложить теоретическую оценку для скорости сходимости.

Вариант	n	r	A
2	4	1	0
6	5	2	0,3
10	5	3	1,2,3

14	4	2	0,1,2
18	4	2	2,3

Вариант 3,7,11,15,19. В ящике лежит n шаров, из которых m белых. На каждом шаге из ящика берут r шаров и заменяют на k белых и r-k черных. Состояние системы в момент t - число белых шаров в ящике.

- 1) Найти матрицу вероятностей перехода; вероятности состояний системы за первые 10 шагов, считая в начальный момент времени система находилась в любом возможном состоянии с равными вероятностями.
- 2) Для стационарного режима найти распределение вероятностей, математическое ожидание, дисперсию и ковариационную функцию для ξ_i .
- 3) Оценить скорость сходимости точного распределения к стационарному. По графику разности вероятностей предложить теоретическую оценку для скорости сходимости.

Вариант	n	m	r	k
3	5	3	2	1
7	4	3	3	2
11	5	2	2	1
15	4	2	3	1
19	6	2	3	2

Вариант 4,8,12,16,20. Два игрока играют игру на следующих правилах. Проигравший игрок отдает одну монету сопернику. Если один из игроков разорился, то второй отдает ему r монет, после чего игра продолжается. При ничьей оба игрока сохраняют свой капитал. В начальный момент времени игроки имели по n монет. Вероятности выигрыша каждой партии для игроков равны p_1 и p_2 . Пусть ξ_t - капитал первого игрока после t партий.

- 1) Найти матрицу вероятностей перехода; вероятности состояний системы за первые 10 шагов, считая в начальный момент времени система находилась в любом возможном состоянии с равными вероятностями.
- 2) Для стационарного режима найти распределение вероятностей, математическое ожидание, дисперсию и ковариационную функцию для ξ_t .
- 3) Оценить скорость сходимости точного распределения к стационарному. По графику разности вероятностей предложить теоретическую оценку для скорости сходимости.

Вариант	n	r	$p_{_1}$	$p_{_{2}}$
4	5	1	0.2	0.3
8	4	3	0.5	0.4
12	4	1	0.5	0.5
16	3	2	0.3	0.2
20	5	3	0.5	0.5

Задача 4.

Вариант 1,5,9,13,17. Клиенты приходят в банк пуассоновским потоком с интенсивностью λ . Каждый из них подает от одной до m заявок в соответствии с распределением \mathcal{P} . Заявки обслуживают l операционистов с интенсивностью ν . Если все операционисты заняты, то заявки становятся в очередь, максимальная длина которой равна N. Если клиент приходит в банк, когда все места в очереди заняты, то он не подает заявок. Если же свободных мест в очереди меньше, чем потенциальное число возможных заявок, то он подает любое возможное число заявок с равными вероятностями.

- 1). Найти вероятность того, что в системе не будет очереди из заявок в момент t.
- 2). В стационарном режиме найти распределение вероятностей, среднее число занятых операционистов, среднее число заявок в очереди.
- 3). Какое нужно минимальное число операционистов, чтобы в стационарном режиме средняя длина очереди была не больше 2?

Вариант	m	\mathcal{P}	l	N	λ	ν
1	2	$p_{_{1}}=0.3,p_{_{2}}=0.7$	1	5	3	4
5	2	$p_{_{1}}=0.5,p_{_{2}}=0.5$	2	4	2	2
9	3	$p_1 = 0, p_2 = 0.4, p_3 = 0.6$	2	4	4	4
12	3	$p_1 = 0.5, p_2 = 0, p_3 = 0.5$	2	4	4	3
16	3	$p_{_{1}}=0.8, p_{_{2}}=0.2$	1	3	5	2

Вариант 2,6,10,14,18. Устройство состоит из n одновременно работающих элементов и m запасных. Устройство обслуживает l рабочих. Каждый элемент ломается с интенсивностью λ . При поломке работающего элемента он заменяется на запасной, если он есть, и производится ремонт сломавшегося элемента, а поломанные элементы ремонтируются, если хотя бы один рабочий свободен или становятся в очередь на ремонт. Интенсивность ремонта для каждого рабочего равна ν . Устройство отказывает, если число исправных элементов меньше n, при этом ремонт поломанных элементов продолжается с прежней интенсивностью. Наработка на отказ — время работы устройства до первой остановки.

- 1). Найти функцию распределения и математическое ожидание времени работы устройства до первого отказа (наработка на отказ) при наличии и при отсутствии ремонта.
- 2). Для стационарного режима найти распределение вероятностей, среднее число неисправных элементов, среднее число занятых рабочих.

Вариант	n	m	l	λ	ν
2	1	4	1	2	1
6	2	2	2	1	1

10	3	3	1	1.5	2
14	2	3	2	1	0.7
18	3	2	2	0.5	1

Вариант 3,7,11,15,19. В автопарк, рассчитанный на N мест, приезжают легковые и грузовые машины. Легковые машины приезжают пуассоновским потоком с интенсивностью λ , грузовые --- с интенсивностью μ . Легковая машина занимает 1 место, грузовая — m . В среднем каждая грузовая машина стоит 5 часов, легковая — 2 часа. Если машина приезжает, когда свободных мест нет (или недостаточно), то она уезжает.

- 1). Найти вероятность того, что грузовая машина, приехавшая в момент t, не сможет встать на стоянку. Найти эту же вероятность для легковой машины.
- 2). В стационарном режиме найти среднее число свободных мест на стоянке. Чему должно быть равно N, чтобы в среднем не менее n мест было свободно?

Вариант	N	m	n	λ	μ
3	5	1	2	3	1
7	6	2	2	1	2
11	7	3	3	1.5	0.5
15	8	2	2	0.3	1.7
19	4	1	1	1.5	1

Вариант 4,8,12,16,20. Вызовы приходят на телефонную станцию типа 1 или 2 пуассоновским потоком с интенсивностью λ . Одновременно i-я станция может обслуживать не более N_i вызовов. Среднее время разговора на i-й станции равно m_i мин. Если вызов приходит в момент, когда все каналы заняты, то он отклоняется.

- 1). Для каждой системы найти функцию распределения времени до первого отклоненного вызова. Для какой из двух систем среднее время меньше?
- 2). В стационарном режиме вычислить среднее число обслуживаемых вызовов, долю простоя системы, пропускную способность системы и пропускную способность на 1 канал.

Вариант	$N_{_1}$	$N_{_2}$	$m_{_{1}}$	$m_2^{}$	λ
4	5	3	2	1	2
8	6	3	3	1.5	2
12	7	4	1	0.7	1
16	8	5	2	1	1.5
20	4	3	3	2	3