ЗАДАНИЕ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КУРСОВОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ «ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ»

Выполнение КР с 25. 02 по 25.04.2016г. Зашита КР – с 25.04 по 17.05.2016г.

ТЕМА КУРСОВОЙ РАБОТЫ:

«Исследование системы автоматического управления и ее коррекция».

ЦЕЛЬ КУРСОВОЙ РАБОТЫ:

На основе исходных данных провести исследование и коррекцию системы автоматического управления(САУ) для обеспечения заданного качества процесса управления в соответствии с вариантом задания.

ИСХОДНЫЕ ДАННЫЕ ДЛЯ ВАРИАНТОВ ЗАДАНИЯ

1. Структурные схемы исследуемых САУ

Структурные схемы для каждого варианта задания приведены в Приложении 1, а номера вариантов заданий и соответствующие им исходные данные указаны в Приложении 2.

Структурные схемы САУ №№ 1, 2, 3 отображают систему автоматического регулирования скорости вращения ротора электродвигателя $\Omega_{\rm д}$. На указанных структурных схемах электродвигатель является объектом автоматического управления (регулирования).

Структурные схемы САУ №№ 4 ... 10 отображают систему управления рукой робота-манипулятора, в которой непосредственно регулируется угол поворота редуктора Θ_{p} . Вращение вала электродвигателя через редуктор

обеспечивает управляемый поворот руки робота. В данной САУ электродвигатель является исполнительным устройством, непосредственно воздействующим на объект управления через редуктор, который обеспечивает сочленение с управляемой рукой робота.

На структурных схемах задающее напряжение U_3 сравнивается с напряжением $U_{\rm J}$ датчика скорости вращения или датчика угла поворота, установленными в главной обратной связи САУ и выполняющими функцию измерительного устройства на выходе объекта управления.

На выходе вычитающего (сравнивающего) устройства формируется сигнал рассогласования $\Delta = U_3 - U_д$ между задающим напряжением и напряжением датчика, измеряющего регулируемую (наблюдаемую) величину скорости вращения ротора электродвигателя или величину угла поворота редуктора, сочлененного с рукой робота.

2. Передаточные функции звеньев САУ

2.1. Усилитель

Передаточная функция

$$W_{y1}(p) = \frac{k_y}{T_y p + 1} .$$

Значения коэффициентов k_y и постоянных времени T_y задаются в табл.1 Приложения 2 для каждого варианта задания. Коэффициент передачи усилителя k_y может варьироваться для повышения качества процесса автоматического управления.

2.2. Электродвигатель

Передаточная функция

$$W_{\rm AB}(p) = rac{k_{
m AB}}{T_{
m M} T_{
m M} p^2 + T_{
m M} p + 1}$$
 ,

где коэффициент передачи электродвигателя $k_{\rm ДB}$ =0,6;

электромеханическая постоянная времени электродвигателя $T_{\rm M}=1,6$ c;

электромагнитная постоянная времени якорной цепи $T_{\rm F}=0.8{\rm c}$ для структурных схем №№ 5, 6, 7;

электромагнитная постоянная времени якорной цепи $T_{\rm M}=0.1{\rm c}$ для структурных схем $N_{\rm M} = 1, 2, 3, 4, 8, 9, 10.$

2.3. Редуктор

Передаточная функция

$$W_{\rm p}(p) = \frac{k_{\rm p}}{p} ,$$

где передаточное отношение редуктора $k_{\rm p} = \frac{1}{30}$.

2.4. Датчик угловой скорости вращения ротора электродвигателя

Для структурных схем №№ 1, 2, 3 передаточная функция

$$W_{\mathrm{d}}(p) = \frac{k_{\mathrm{dT}}}{T_{\mathrm{d}}p + 1} ,$$

где коэффициент передачи $k_{\rm ДT}$ = 0,02 B/(рад/c); постоянная времени $T_{\rm Д}$ = 0,006 c.

2.5. Датчик угла поворота редуктора

2.5.1. Для структурных схем №№ 4, 7, 8, 9 передаточная функция

$$W_{\mathrm{A}}(p) = rac{k_{\mathrm{AT}}}{T_{\mathrm{B}}p+1}$$
 ,

где коэффициент передачи датчика угла поворота $k_{\rm ДT}$ = 0,01 В/рад, постоянная времени датчика угла поворота $T_{\rm Д}$ = 0,003 с.

2.5.2. Для структурных схем №№ 5, 6, 10 передаточная функция

$$W_{\!\scriptscriptstyle \rm I}(p)=k_{\scriptscriptstyle \rm JT}\,,$$

где коэффициент передачи датчика угла поворота редуктора $k_{\rm ДT} = 0.01~{
m B/pag}$.

2.6. Звенья последовательной коррекции

2.6.1. Для структурных схем № 1, №2 передаточная функция

$$W_{\text{\tiny IIK}}(p) = \frac{k_{\text{\tiny K}}(1+\tau_{\text{\tiny K}}p)}{T_{k}p+1}.$$

2.6.2. Для структурной схемы № 3 передаточная функция

$$W_{\text{\tiny IIK}}(p) = \frac{k_{\text{\tiny K}} + \tau_{\text{\tiny K}} p}{T_k p + 1}.$$

2.6.3. Для структурной схемы № 4 передаточная функция

$$W_{\text{HK}}(p) = (k_{\text{K}} + \tau_k p)^2.$$

2.6.4.Для структурной схемы № 5 передаточная функция

$$W_{\text{IIK}}(p) = \frac{(k_k + \tau_k p)^2}{T_k p + 1}.$$

2.6.5. Для структурных схем № 6, №10 передаточная функция

$$W_{\text{IIK}}(p) = \frac{k_k (1 + \tau_k p)^2}{T_k p + 1}$$
.

2.6.6. Для структурных схем №№ 7, 8, 9 передаточная функция

$$W_{\text{IIK}}(p) = k_{\text{K}}(1 + \tau_{\text{K}}p)^2$$
.

В звеньях последовательной коррекции значения коэффициентов передачи $k_{\rm K}$ и постоянных времени $\tau_{\rm K}$, T_k выбираются на основе анализа динамических процессов САУ и обеспечения требуемого качества

процесса управления. Предварительно установлены следующие их значения: $k_{\rm K} = 2$; $\tau_{\rm K} = 10$ c; $T_{\it k} = 0.01$ c.

2.8. Звенья параллельной коррекции

$$W_{0i}(p) = \tau_{0i} p$$
, i=1, 2.

Постоянные времени корректирующих звеньев τ_{0i} , i=1,2 могут варьироваться для обеспечения требуемого качества функционирования САУ. Предварительно установлены значения: $\tau_{01} = 10^{-5}$ c; $\tau_{02} = 5$ c.

ТРЕБОВАНИЯ ПО КАЧЕСТВУ ПРОЦЕССА УПРАВЛЕНИЯ САУ

- 1. В процессе коррекции САУ обеспечить требуемое качество процесса управления САУ по ее устойчивости и точности:
 - запас устойчивости по амплитуде $L_A(\omega) \ge 12$ дБ;
 - запас устойчивости по фазе $\Delta \varphi \ge 60$ град.;
 - статическая ошибка $\Delta_{\rm cr} \leq 0,1\%$ относительно постоянного значения задающего воздействия на входе системы.
- 2. При достижении требуемых запасов устойчивости и заданной точности САУ обеспечить требуемое качество переходного процесса:
 - быстродействие САУ, определяемое временем переходного процесса $t_{\Pi} \leq 3$ с;
 - колебательность переходного процесса $N \le 1$;
 - перерегулирование $\sigma \leq 15\%$.

ОСНОВНЫЕ ВОПРОСЫ, ПОДЛЕЖАЩИЕ ИССЛЕДОВАНИЮ И <u>РАЗРАБОТКЕ</u>

- 1. Анализ устойчивости САУ с применением алгебраического и частного критериев устойчивости системы
 - 1.1.Составление передаточной функции разомкнутой и замкнутой САУ.
 - 1.2. Анализ устойчивости САУ с применением критерия Рауса-Гурвица.

- 1.3. Анализ устойчивости САУ с применением критерия Найквиста.
- 1.4. Анализ путей повышения устойчивости САУ.

2. Анализ точности САУ в вынужденном режиме

- 2.1. Анализ статической ошибки.
- 2.2. Анализ ошибки по скорости.
- 2.3. Анализ путей повышения точности САУ.

3. Анализ качества переходного процесса

- 3.1. Частотный метод анализа переходного процесса.
- 3.2. Корневой метод анализа переходного процесса.
- 3.3. Построение переходной характеристики и оценка основных показателей качества переходного процесса.
- 3.4. Анализ путей повышения качества переходного процесса.

4. Разработка рекомендаций по повышению качества процесса управления исследуемой САУ

- 4.1.Выбор путей коррекции САУ.
- 4.2. Расчет запасов устойчивости скорректированной САУ по амплитуде и фазе.
- 4.3. Расчет точности скорректированной САУ в вынужденном режиме.
- 4.4. Оценка качества переходного процесса скорректированной САУ.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ И ЗАЩИТЕ <u>КУРСОВОЙ РАБОТЫ</u>

Методические указания по анализу и коррекции САУ

- 1. Для анализа устойчивости исследуемой САУ применить последовательно алгебраический критерий Рауса-Гурвица и частотный критерий Найквиста.
- 2. Для применения одной из двух формулировок критерия Найквиста необходимо предварительно провести анализ устойчивости САУ в разомкнутом состоянии. Применяя критерий Найквиста к САУ с неединичной обратной связью, следует преобразовать ее исходную

- структурную схему с целью получения единичной главной обратной связи, отнеся датчик к объекту управления и получив таким образом преобразованный объект как объект управления с последовательно подключенным к его выходу датчиком.
- 3. Для проверки достоверности результатов анализа устойчивости исследуемой САУ в разомкнутом и замкнутом состояниях найти с использованием прикладной программы Mathcad корни соответствующих характеристических уравнений САУ в разомкнутом и замкнутом состояниях.
- 4. При анализе запасов устойчивости САУ по амплитуде и фазе использовать логарифмическую амплитудно-частотную характеристику (ЛАЧХ) и логарифмическую фазо-частотную характеристику (ЛФЧХ) разомкнутой САУ. Для построения ЛАЧХ и ЛФЧХ следует применять прикладную программу Mathcad.
- 5. Точность исследуемой системы в установившемся режиме оценивать при постоянном и линейно нарастающем входном воздействии, определяя соответственно статическую ошибку И ошибку ПО скорости коэффициентов установившемся режиме методом ошибок. Для скорректированной САУ определить точность САУ по скорости.
- 6. Анализ качества переходного процесса САУ первоначально провести прямым методом, оценив основные показатели качества переходного процесса САУ непосредственно по графику переходной характеристики, а далее анализ провести с использованием косвенных методов корневого и частотного методов анализа переходных процессов. По результатам оценки показателей качества переходного процесса прямым и косвенными методами провести сравнительный анализ.
- 7. Качество переходного процесса оценить по трем основным показателям:
 - время переходного процесса $t_{\rm n}$ время от начала переходного процесса до момента достижения им установившегося значения с допустимым отклонением от него на величину 5%;
 - колебательность переходного процесса **N** число колебаний (максимумом) за время переходного процесса;
 - перерегулирование σ отношение максимального отклонения от установившегося значения переходной характеристики к ее установившемуся значению, выраженное в процентах.

Для приближенных расчетов показателей качества переходного процесса могут быть использованы соотношения, полученные на основе связи переходной характеристики замкнутой САУ с её частотными характеристиками в разомкнутом состоянии (частотный метод), а также с

использованием связи переходной характеристики исследуемой системы с ее корневым портретом (корневой метод).

Время переходного процесса $t_{\rm n}$ можно определить по приближенным соотношениям. Для колебательной переходной характеристики с колебательностью **N**:

$$t_{\rm II} \approx 2\pi N/\omega_{\rm cp}$$
.

В данном и в последующих соотношениях частота среза ω_{cp} определена для системы в разомкнутом состоянии.

Колебательность ${\bf N}$ с периодом колебаний ${\bf T_0}$ можно определить, как число периодов за время переходного процесса по соотношению

$$N pprox rac{t_{\Pi}}{T_0} pprox rac{\omega_{cp}t_{\Pi}}{2\pi}$$
.

В отсутствие колебательности переходной характеристики (N=0):

$$t_{\rm m} pprox \pi/\omega_{\rm cp}$$
 .

По корневому портрету можно оценить время переходного процесса вне зависимости от характера переходного процесса:

$$t_{_{\Pi}}pproxrac{3}{\eta}$$
 ,

Здесь показатель η , называемый степенью устойчивости системы, определяется как расстояние на комплексной плоскости от мнимой оси до ближайшего к ней корня p_k с отрицательной вещественной частью Rep_k :

$$\eta = \min_{\{i\}} |Rep_i| = |Rep_k|, \quad i=1, 2, ..., n,$$

где $\{p_i\}$, i=1, 2, ..., n, - множество корней характеристического уравнения системы n-порядка.

Характер переходной характеристики можно определить по корневому портрету исследуемой системы. Наличие мнимой части у корней характеристического уравнения системы приводит к колебательности переходного процесса и перерегулированию.

Величина перерегулирования может быть вычислена по приближенной формуле

$$\sigma \approx (1 - \sin \Delta \varphi) 100\%$$
,

где $\Delta \phi$ - запас устойчивости по фазе исследуемой замкнутой системы.

8. Для построения переходной характеристики исследуемой системы следует использовать связь переходной характеристики h(t) с передаточной

- функцией W(p). При подаче на вход исследуемой системы с передаточной функцией W(p) единичного скачка 1(t), имеющего в операторной форме вид 1/p, можно определить переходную характеристику h(t) как обратное преобразование Лапласа выходной величины в операторной форме H(p) = W(p)/p: h(t) = L^{-1} [W(p)/p]. Для построения графика переходной характеристики использовать прикладную программу Mathcad.
- 9. Для обеспечения требуемого качества процесса управления исследуемой САУ следует варьировать параметры корректирующих звеньев САУ и усилителя, а при необходимости вводить дополнительные корректирующие звенья.
- 10.Для вычисления значений диагональных миноров матрицы Гурвица, вычисления корней характеристических уравнений САУ, построения ее частотных характеристик: годографа амплитудно-фазовой частотной характеристики(АФЧХ), ЛАЧХ и ЛФЧХ, а также для построения и анализа переходной характеристики исследуемой САУ использовать прикладную программу Mathcad.
- 11. Дополнительно может быть построена модель исследуемой САУ с применением пакета прикладных программ Matlab и на ее модели проведено исследование для проверки достоверности ранее полученных характеристик САУ.

Требования к содержанию и оформлению курсовой работы

Пояснительная записка к курсовой работе должна содержать:

- 1. Титульный лист.
- 2. Введение

Во введении раскрывается актуальность темы, формулируются цели и задачи курсовой работы, описываются предмет, объект и методы исследования.

3. Основная часть.

Основная часть должна быть посвящена анализу устойчивости исследуемой САУ, переходных процессов и точности САУ, анализу основных динамических характеристик САУ и необходимой их коррекции. Здесь приводятся аналитические выражения и графики: годографы АФЧХ, логарифмические АЧХ, ФЧХ, графики переходной функции.

- 4. Выводы и рекомендации по обеспечению качества функционирования САУ.
- 5. Список использованных источников.

Оформляется пояснительная записка в соответствие с требованиями ГОСТа по оформлению отчета о научно-исследовательской работе. Объем пояснительной записки не более 20 листов формата A4 при использовании шрифта Times New Roman размером 14пт и размера межстрочного интервала 1,5. Все рисунки должны иметь подрисуночные надписи, а таблицы — наименования, поясняющие их содержание. Формулы должны иметь порядковую нумерацию в круглых скобках. Номер указывается в одной строке с приводимой формулой в правой стороне от нее.

В Приложении к пояснительной записке должен быть представлен демонстрационный материал, иллюстрирующий основные результаты анализа статических и динамических свойств исследуемой САУ и разработанные рекомендации по повышению качества процесса управления исследуемой САУ (не менее 5 слайдов). При этом чертежи, графики, диаграммы, схемы должны соответствовать требованиям государственных стандартов ЕСКД.

Пояснительная записка представляется на защиту в сброшюрованном виде и с оформленным Приложением на отдельных листах.

В качестве примера иллюстрации результатов курсовой работы, выносимых на ее защиту, в Приложении 3 представлен фрагмент иллюстрации доклада.

Порядок защиты курсовой работы

Пояснительная записка по курсовой работе представляется руководителю курсовых работ не позднее чем за 5 дней до назначенного дня ее защиты для предварительной оценки содержания и качества оформления курсовой работы.

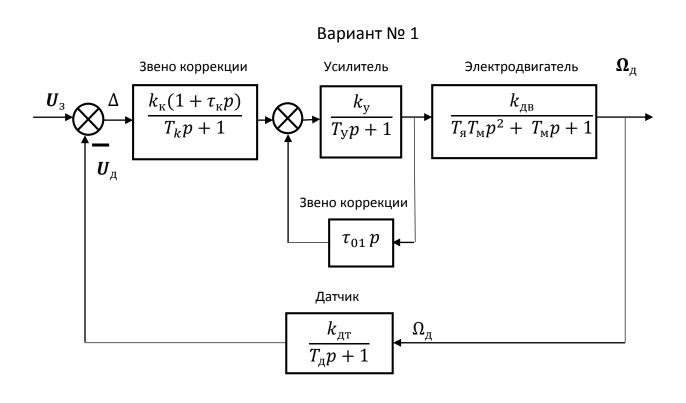
Защита курсовой работы проводится в форме доклада ее основных результатов. На доклад отводится до 10 минут, в течение которых студент должен раскрыть суть проведенных исследований и основные результаты анализа САУ с последующей её коррекцией. После доклада студент отвечает на вопросы руководителя по уточнению результатов выполненной курсовой работы и проверке уровня знаний и компетенций по анализу и коррекции САУ.

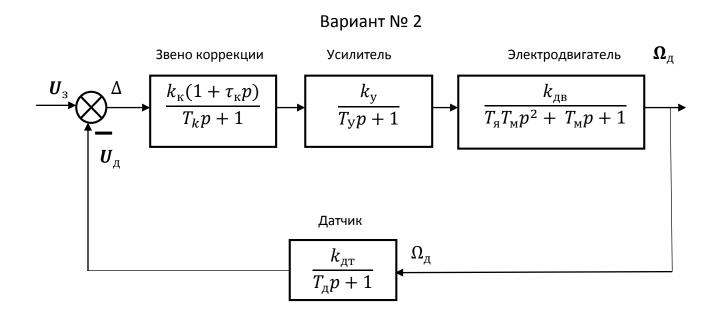
Оценка курсовой работы

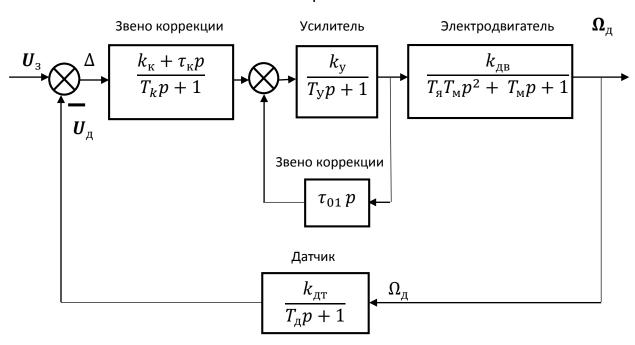
Курсовая работа оценивается руководителем курсовой работы по следующим компонентам:

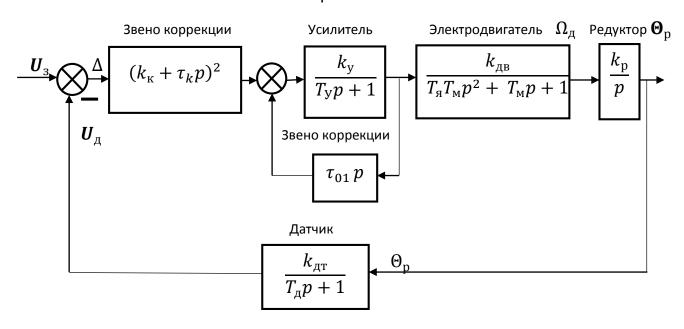
- по степени полноты, достоверности и обоснованности результатов выполнения задания по курсовой работе;
- по качеству оформления пояснительной записки и демонстрационного материала;
- по уровню качества доклада и использованного в ходе доклада иллюстративного материала;
- по уровню обоснованности и полноты ответов студента в ходе защиты курсовой работы.

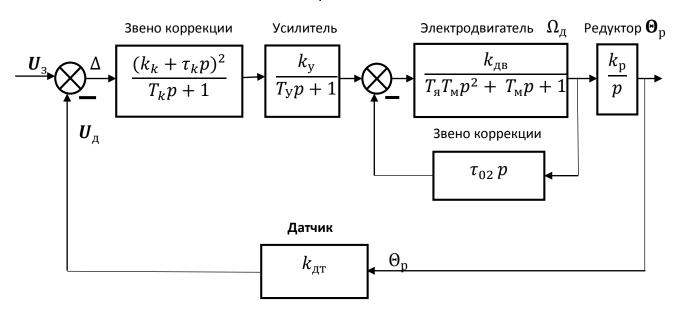
Рекомендуемая учебная литература

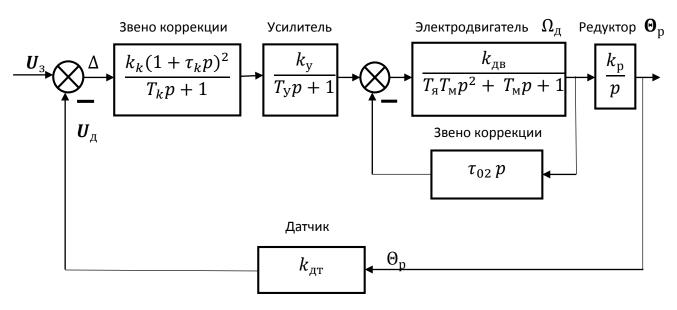

Основная литература

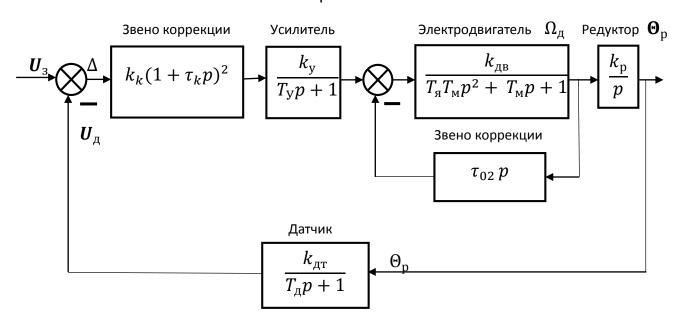

- 1. Юревич Е. И. Теория автоматического управления. Учебник для вузов / Е. И. Юревич. -3-е изд. БХВ-Петербург, 2007.
- 2. Савин М. М. Теория автоматического управления: Учеб. пособие для вузов/ М. М. Савин, В. С. Елсуков, О. Н. Пятина; под ред. д.т.н., проф. В. И. Лачина. Ростов н/Д: Феникс, 2007.
- 3. Федоров С. Е. Учебно-методическое пособие по выполнению курсовой работы по дисциплине Теория автоматического управления. М. МТУСИ, 2015.
- 4. Шишмарев В. Ю. Теория автоматического управления. М.: Академия, 2012.

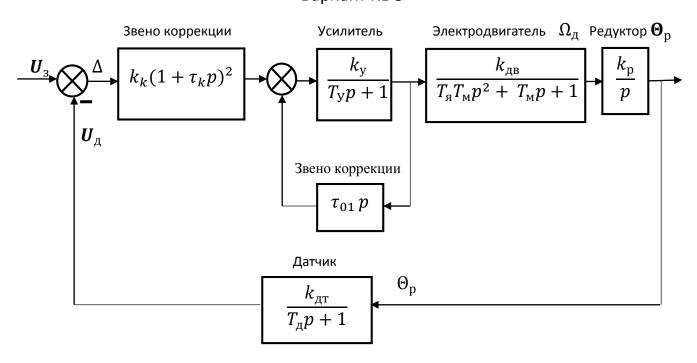

Дополнительная литература

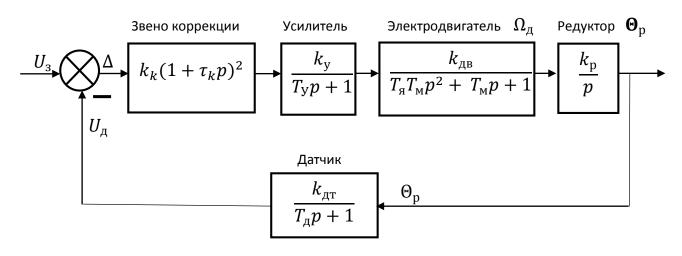

- 1. Дьяконов В. П. Mathcad 11/12/13 в математике. Справочник. М.: Горячая линия. Телеком, 2007.
- 2. Ким Д. П. Теория автоматического управления. Т 1. Линейные системы. Учеб. пособие для вузов. 2-е изд., исп. доп. М.: Физматлит, 2010.
- 3. Ким Д. П., Дмитриева Д. П. Сборник задач по теории автоматического управления. Линейные системы. М.: Физматлит, 2007.
- 4. Востриков А. С. Теория автоматического регулирования [Текст]: учеб. пособие для вузов / А. С. Востриков, Г. А. Французова. М.: Высшая школа, 2006 (гриф УМО).
- 5. Первозванский А. А. Курс теории автоматического управления [Текст]: учеб. пособие / А. А. Первозванский-2-е изд., стер. Спб: Лань, 2010.

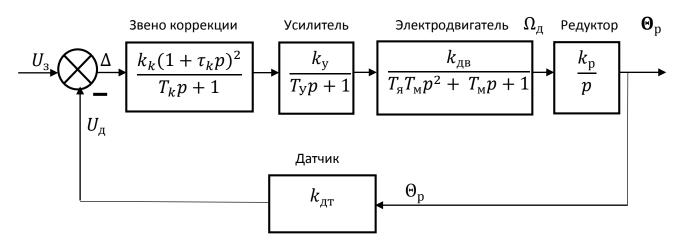

Варианты структурных схем исследуемых САУ











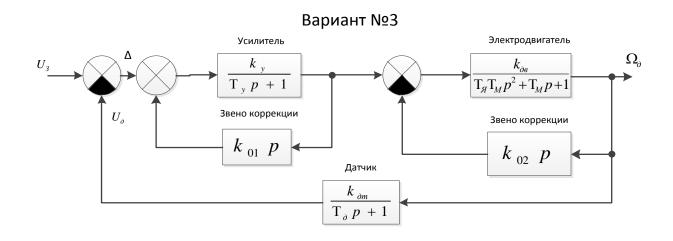
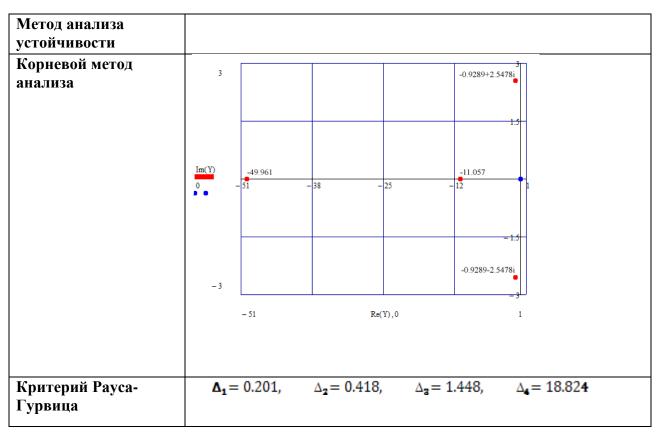
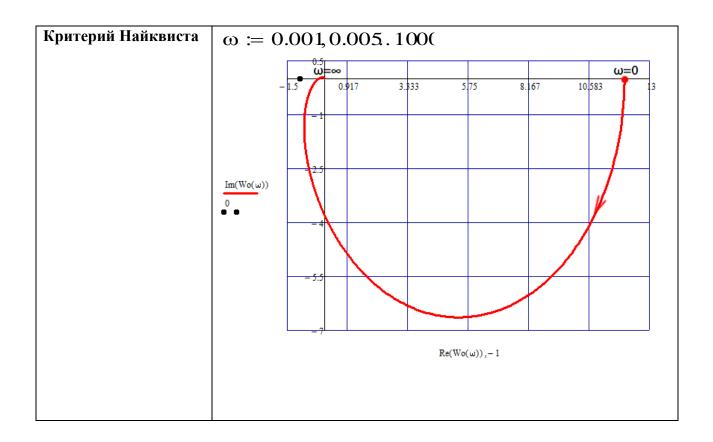
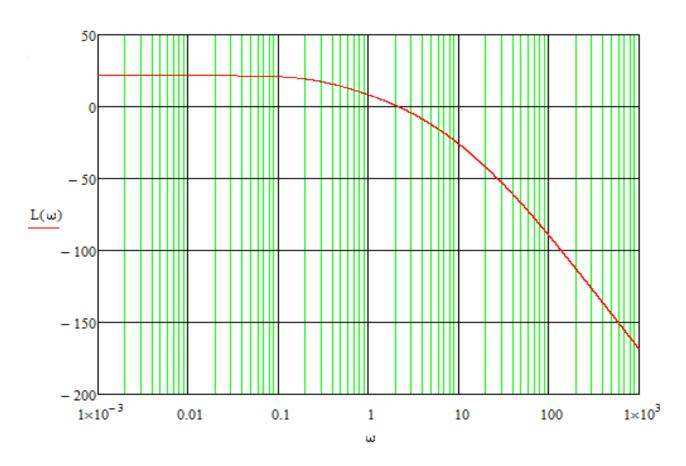

Приложение 2

Таблица 1 Варианты задания

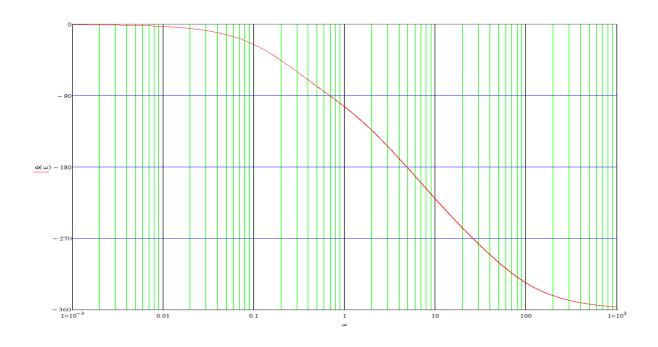

Номер варианта задания	Номер структурной схемы САУ	Коэффициент передачи усилителя k.	Постоянная времени усилителя Т _у , с
<u> </u>	1	k _y 7*10 ³	0,08
2	2	3*10 ³	0,04
3	3	7*10 ³	0,08
4	4	7*10 ³	0,08
5	5	2*10 ³	0,04
6	6	2*10 ³	0,04
7	7	2*103	0,04
8	8	6*10 ³	0,08
9	9	2*10 ³	0,04
10	10	2*10 ³	0,04
11	1	4*10 ³	0,07
12	2	6*10 ³	0,08
13	3	5*10 ³	0,07
14	4	5*10 ³	0,07
15	5	6*10 ³	0,08
16	6	6*10 ³	0,08
17	7	6*10 ³	0,08
18	8	4*10 ³	0,07
19	9	5*10 ³	0,08
20	10	5*10 ³	0,08
21	1	8*10 ³	0,09
22	2	4*10 ³	0,06
23	3	4*10 ³	0,09
24	4	4*10 ³	0,09
25	5	3*10 ³	0,06
26	6	3*10 ³	0,06
27	7	3*10 ³	0,06
28	8	6*10 ³	0,09
29	9	3*10 ³	0,06
30	10	3*10 ³	0,06


Пример иллюстрации доклада о результатах исследования САУ

Структурная схема САУ



Анализ устойчивости САУ



ЛАЧХ разомкнутой САУ

ЛФЧХ разомкнутой САУ

Показатели качества САУ (частотный метод)

Запасы устойчивости замкнутой САУ

Запас устойчивости по амплитуде

$$L_A (\omega) = 0$$
; $\omega_{\rm cp} = 4.843$

$$\Delta L_A = 11.998$$
 дБ

Запас устойчивости по фазе

$$\omega_{\pi}~=~2.14;~~~ \varphi \left(\omega_{\pi}\,
ight)=~-137.33$$
 град.

$$\Delta \varphi = 180 - |\varphi (\omega_{\pi})| = 42.67$$
 град.

Показатель колебательности переходного процесса

Длительность переходного процесса

$$t_{\pi} \approx \frac{2\pi}{\omega_{0.3aM}} = 2.9 c$$

Колебательность переходного процесса

$$N \approx \frac{\omega_{\rm cp} t_{\rm m}}{2\pi} \approx 1.$$

Перерегулирование

$$\sigma \approx (1 - \sin \Delta \varphi) 100\% \approx 32\%$$
.

Показатели качества САУ (корневой метод)

$$P := \begin{pmatrix} -11.057 \\ -49.961 \\ -0.9289 - 2.5478i \\ -0.9289 + 2.5478i \end{pmatrix}$$

Показатель степени устойчивости САУ

$$\eta = \min | Re (p_i) | = 0.929$$
{i}

Длительность переходного процесса

$$t_{\pi} \leq \frac{3}{\eta}; t_{\pi} \leq 3.2 c$$

Показатели степени колебательности переходного процесса

$$z := -0.9289 + 2.5478$$

$$\mu := \left| \frac{Im(z)}{Re(z)} \right| = 2.743$$

$$\gamma := \frac{\arg(z) \cdot 180}{\pi} = 110.031$$

Анализ точности замкнутой САУ

Коэффициент статической ошибки

$$c_0 = 1 - W_3(0),$$

$$c_0 = \frac{1}{1 - k_v k_{AB} k_{AT}} = 0,077.$$

Коэффициент ошибки по скорости

$$c_1 = \left[\frac{d}{dp} (1 - W_3(p))\right]_{p=0} = 0,0335.$$