АКАДЕМИЯ ГОСУДАРСТВЕННОЙ ПРОТИВОПОЖАРНОЙ СЛУЖБЫ МИНИСТЕРСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ

КАФЕДРА ЗАЩИТЫ НАСЕЛЕНИЯ И ТЕРРИТОРИЙ УНК ГЗ

КОНТРОЛЬНАЯ РАБОТА № 1

по учебной дисциплине: «Безопасность жизнедеятельности»

для заочной и дистанционной формы обучения

РАСЧЕТ ЗВУКОИЗОЛИРУЮЩЕГО КОЖУХА ПРОМЫШЛЕННОГО ОБОРУДОВАНИЯ

Учебные вопросы:

- 1. Общие понятия и определения.
- 2. Краткая теоретическая часть.
- 3. Порядок расчета звукоизолирующего кожуха.
- 4. Пример расчета.
- 5. Задание на контрольную работу № 1.

Литература

- 1. ГОСТ ССБТ 12.1.003-83 «Шум. Общие требования безопасности»
- 2. CH 2.2.4/2.1.8.562-96. Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки.
 - 3. СНиП 23-03-2003. Защита от шума (
- 4. Средства защиты в машиностроении: Расчет и проектирование. Справочник/ С.В. Белов, А.Ф. Козьяков, О.Ф. Партолин и др.; Под ред. С.В. Белова.-М.: Машиностроение, 1989.

1. Общие понятия и определения

Одним из отрицательных факторов окружающей среды на предприятиях промышленности является шум. К шуму относятся любые звуки, мешающие нормальному режиму труда и отдыха, независимо от их происхождения.

При расчете шумового режима и разработке рекомендаций по снижению шума приходится сталкиваться с двумя понятиями. Это:

- шумовые характеристики аппаратуры;
- уровни акустических шумов в производственных помещениях.

Основными шумовыми характеристиками машины и оборудования являются:

- а) уровни звуковой мощности шума в октавных полосах со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц (L_p);
 - б) корректированный уровень звуковой мощности (L_{ра});
 - в) фактор направленности шума (Φ);

- г) уровни звукового давления в октавных полосах частот, характеризующие спектральный состав шума (L);
- д) уровни звука, под которыми понимают интегральный уровень шума, измеренный прибором с частотной характеристикой типа $A(L_A)$.

Уровни звукового давления, интенсивности и уровни звуковой мощности соответственно определяются по формулам:

$$L = 20 lg (p/p_0); Lj = 10 lg (J/J_0); Lp = 20 lg (P/P_0);$$
 (1.1)

где $\emph{\textbf{L}}, \emph{\textbf{Lp}}, \emph{\textbf{Lj}}$ - уровни звукового давления, интенсивности, звуковой мощности, дБ;

р - звуковое давление, Па;

J - интенсивность звука, BT/M^2 ;

Р - Звуковая мощность, Вт;

 p_0 ; J_0 ; P_0 - соответствующие пороговые значения звукового давления, интенсивности и звуковой мощности; $p_0 = 2.10^{-5}$ Па; $J_0 = 10^{-12}$ Вт/м²; $P_0 = 10^{-12}$ Вт.

Одним из методов обеспечения безопасности работающих при воздействии шума является нормирование шума. Цель нормирования — установление предельно допустимых величин характеристик шума, которые при ежедневном систематическом воздействии в течение всего рабочего дня и в течение многих лет не могут вызвать заболеваний организма человека и не мешают его нормальной его нормальной трудовой деятельности.

Физиологическое воздействие шума на человека зависит от многих факторов: уровня звукового давления (интенсивности) шума, его частотного состава, временных характеристик, продолжительности действия, индивидуальных особенностей человека. Поэтому для нормирования выбирают основные характеристики, а остальные учитывают в виде поправок.

Предельные величины шума на рабочих местах регламентируются ГОСТ ССБТ 12.1.003-83 «Шум. Общие требования безопасности» и СН 2.2.4/2.1.8.562-96 "Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки". Нормируемой характеристикой являются уровни звукового давления в октавных полосах в дБ со среднегеомет-

рическими частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц. Нормы построены на принципе предельных спектров, которые служат для характеристики определенного шума одним числом (например, ПС-70) с учетом интенсивности и спектрального распределения шума. Номер предельного спектра численно равен уровню звукового давления в октавной полосе со среднегеометрической частотой 1000 Гц. Для ориентировочной оценки допускается за характеристику постоянного шума на рабочем месте принимать уровень звука в дБА, измеряемый по шкале А шумомера.

Технические средства защиты от шума, применяемые на предприятиях, подразделяются на: средства коллективной защиты и средства индивидуальной защиты. В свою очередь акустические средства коллективной защиты подразделяются на: средства звукоизоляции, средства звукопоглощения и глушители.

Разработка и выбор средств защиты от шума производится на основании акустического расчета. Акустический расчет включает:

выявление расчетных точек, для которых производится расчет;

установление допустимых уровней шума для этих точек;

определение ожидаемых уровней звукового давления в расчетных точках до осуществления мероприятий по снижению шума;

определение требуемого снижения уровней звукового давления (УЗД) в расчетных точках.

Расчетные точки выбираются на рабочих местах в производственных помещениях на высоте 1,2 – 1,5 м от уровня пола. В помещениях с одним источником или несколькими источниками шума, имеющие одинаковые УЗД, выбирают две расчетные точки. Одна точка выбирается на рабочем месте в зоне прямого звука, а другая – на рабочем месте, расположенном в зоне отраженного звука. Если в помещении несколько разных по УЗД источников шума, то в зоне прямого звука выбирают две расчетные точки: на рабочих местах у источников с наибольшими и наименьшими УЗД.

Если в данную точку пространства приходят звуковые волны с уровнями L_i , то суммарный уровень определится по формуле:

$$L = 10 \cdot \lg \sum 10^{0.1L_i} , \qquad (1.2)$$

Вместо формулы (1.2) можно пользоваться данными табл.1.1. При пользовании таблицей надо последовательно складывать уровни, начиная с максимального уровня. Сначала определяют разность двух складываемых уровней, затем определяют по табл. 1.1 добавку к более высокому из складываемых уровней.

Таблица 1.1 Таблица сложения уровней звуковой мощности и давления

Разность двух скла-	0	1	2	3	4	5	6	7	9	10	15	20
дываемых уровней,												
дБ												
Добавка, прибавля-	3	2,2	2	18	15	12	1	0,8	0,5	0,4	0,2	0
емая к более высо-												
кому из уровней, дБ												

2. Краткая теоретическая часть

К средствам звукоизоляции относятся звукоизолирующие ограждения, звукоизолирующие кабины, звукоизолирующие кожухи и акустические экраны. Их целесообразно применять в тех случаях, когда нужно существенно снизить интенсивность прямого звука на рабочих местах.

Требуемую звукоизоляцию от шума, создаваемого звуковой волной, распространяющейся по воздуху (воздушный шум) рассчитывают в октавных полосах частот 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц. Для проведения расчета определяют общее количество ограждений или элементов ограждений (стены, окна, двери, перекрытия и т. п.), через которые шум может проникать в изолирующее помещение. Требуемую звукоизолирующую способность рассчитывают отдельно для каждого элемента ограждения (перекрытие, дверь и т. п.).

Требуемая эффективность звукоизолирующего кожуха определяется по формулам:

$$\Delta L_{g\phi_{mp}} = L_p - 10 \cdot \lg S - L_{\partial on} \tag{2.1}$$

где L_p - октавный уровень звуковой мощности шума источника, дБ

- S площадь воображаемой поверхности правильной геометрической формы, окружающей машину и проходящей через расчетную точку, м 2 ;
- $L_{\partial on}$ допустимый уровень звукового давления в расчетной точке, дБ

Акустическая эффективность кожуха зависит от звукоизолирующей способности его стенок, размеров кожуха и источников шума, наличия звукопоглощающей облицовки под кожухом и от способа установки кожуха.

Акустическая эффективность кожуха можно определить по формуле

$$\Delta L_{\theta,\kappa} = R_k - 10 \cdot \lg \left(\frac{S_k}{S_{ucm}} \right)$$
 (2.2)

- где R_k изолирующая способность стенок кожуха, дБ, определяется по табл. 2.2;
 - S_{ucm} площадь воображаемой поверхности, вплотную окружающей источник, \mathbf{m}^2 ;
 - S_k площадь поверхности кожуха, м².

Поэтому требуемая звукоизолирующая способность стенок кожуха зависит от требуемой эффективности и определяется по формуле:

$$R_{\kappa.mp.} = \Delta L_{9\phi.mp.} + 10 \cdot \lg \left(\frac{S_k}{S_{ucm}} \right)$$
 (2.3)

Если звукоизолирующая способность стенки кожуха ниже $R_{\kappa.mp}$, то следует увеличить толщину стенки, заменить материал кожуха или нанести на внутренние поверхности кожуха слой звукопоглощающего материала.

3. Порядок расчета звукоизолирующего кожуха

Расчет звукоизолирующего кожуха проводится в следующем порядке: 3.1. Определяют требуемую звукоизоляцию кожуха $L_{\kappa, \text{тр}}$ по формуле (2.3). Для этого определяем площадь воображаемой поверхности правильной геометрической формы, окружающей машину и проходящей через расчетную точку (PT) - S, M^2 .

Например, для прямоугольного параллелепипеда (см. рис.3.1):

$$S = 2(b + 2^{-}a)h + 2(L + 2^{-}a)h + (b + 2^{-}a)(L + 2^{-}a).$$

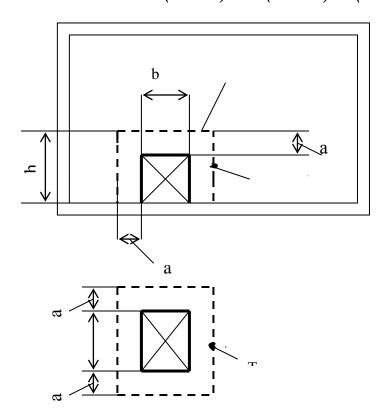


Рис. 3.1. Схема источника шума и расчетной точки

Допустимые уровни звукового давления принимаются по СН 2.2.4/2.1.8.562-96 (см. таблицу Приложения 1).

- 3.2. В соответствии с формой машины и условиями ее эксплуатации выбирают форму кожуха и его конструкцию (размеры зазоров и граней, звукопоглощающий материал для облицовки, необходимые отверстия).
- 3.3. Определяют требуемую звукоизоляцию элементов кожуха по формуле (2.3).

По таблице 3.2 подбирают материал и толщину стенок кожуха.

Если применяется кожух с внутренней облицовкой из звукопоглощающих материалов (ЗПМ), то звукоизоляция стенок определяется с учетом дополнительной звукоизоляции:

$$R = Ru + \Delta R$$

где Ru - звукоизоляция стенок без облицовки. Для стенок из металла звуко- изоляция может быть определена по табл.3.2;

 ΔR - дополнительная звукоизоляция слоем ЗПМ по табл. 3.1.

Таблица 3.1 Дополнительная звукоизоляция ΔR от облицовки кожуха слоем супертонкого стеклянного или базальтового волокна

Размер стенки	C	Среднегеометрическая частота октавной полосы, Гц												
кожуха, м	63	125	250	500	1000	2000	4000	8000						
a ≤ 1	-	1	2	5	6	8	9	10						
a ≥ 1	1	2	4	8	12	16	20	22						

Таблица 3.2 Звукоизоляция стенок кожуха Ru, дБ

Материал	Размер стенки, м	Толщина стенки,	Сре	Среднегеометрическая частота октавной полосы, Гц									
	Размер стенки,	Ton	63	125	250	500	1000	2000	4000	8000			
1	2	3	4	5	6	7	8	9	10	11			
Сталь	4x4 (3x5)	1,5-2	21	26	32	36	42	47	50	30			
	3x3		19	25	30	35	40	45	49	30			
	2x2		26	23	28	33	38	44	48	30			
	1x1		21	29	25	30	35	41	44	30			
	0,5x0,5		18	25	31	29	33	37	40	30			
	4x2		27	25	30	35	40	46	48	31			
	3x1,5		25	33	30	34	39	45	47	31			
	2x1		22	30	28	33	37	42	44	31			
	1x0,5		17	25	31	29	34	39	42	31			
	4x4 (3x5)	3-4	24	29	35	30	45	47	33	42			
	3x3		23	28	33	27	42	45	33	42			
	2x2		28	25	30	35	41	44	33	42			

Продолжение таблицы 3.2

1	2	3	4	5	6	7	8	9	10	11
	1x1	3-4	25	30	27	32	37	41	33	42
	0,5x0,5		21	26	33	30	35	37	33	42
	4x2		29	26	33	37	42	45	34	43
	3x1,5		27	33	31	36	41	44	4	43
	2x1		23	32	29	35	41	43	34	43
	1x0,5		17	25	32	31	35	37	34	43
Дюралю-	4x4 (3x5)	1,5-2	14	19	24	28	33	38	42	24
миниевые	3x3		13	18	23	27	32	37	40	24
сплавы	2x2		18	15	20	25	30	35	38	23
	1x1		15	21	17	27	27	32	35	22
	0,5x0,5		13	18	23	20	25	30	33	20
	4x2		11	14	24	20	26	31	33	20
	3x1,5		15	24	21	25	31	36	38	22
	2x1		13	21	19	24	29	35	37	21
	1x0,5		6	14	24	21	26	31	33	20
	4x4 (3x5)	3-4	15	20	25	30	36	38	23	31
	3x3		13	18	23	28	34	36	23	31
	2x2		20	16	22	29	32	35	23	31
	1x1		16	22	19	25	30	32	23	31
	0,5x0,5		12	18	24	22	27	30	23	31
	4x2		21	18	23	27	33	36	23	31
	3x1,5		18	26	22	26	31	34	23	31
	2x1		15	23	20	25	30	32	23	31
	1x0,5		12	17	23	23	27	31	23	31

Для неоднородного кожуха выбор материала граней производится так же, как для сплошного кожуха. Выбор конструкции окна и глушителей шума с требуемой звукоизоляцией проводится с использованием таблиц Приложения 2 и Приложения 3, соблюдая условие $Ri \geq R_{\kappa.mp}$.

3.4. После выбора материала граней и других элементов производят проверочный расчет неоднородного кожуха.

Для этого определяют среднюю звукоизоляцию R_{cp} по формуле (3.1) и сравнивают с $R_{\kappa.mp}$.

$$R_{cp} = 101g \begin{cases} S_{oou} / \\ \sum_{i=1}^{n} S_{i} \cdot 10^{-0.1Ri} \end{cases}$$
 (3.1)

где n – количество элементов;

 $S_{oбщ}$ – общая площадь неоднородного ограждения;

 S_i , R_i — площадь и звукоизоляция отдельного элемента ограждения (сплошной части).

При этом необходимо учесть звукоизоляцию Ri принятых конструкций глушителей.

Величина R_{cp} для каждой грани должна отвечать условию: $R_{cp} \ge R_{\kappa,mp}$. во всех частотных полосах. При невыполнении этого условия необходимо увеличить звукоизоляцию элементов и заново произвести расчет.

4. Пример расчета

<u>З а д а н и е:</u> Спроектировать звукоизолирующий кожух на электрическую машину (рис.4.1). Машина электрическая и поэтому требует охлаждения. Для этого в кожухе предусмотрены отверстия для циркуляции воздуха. Спектр звуковой мощности, излучаемой машиной, приведен в таблице 4.1.

Работа оператора машины связана с повышенными требованиями к процессам наблюдения и дистанционного управления производственными циклами.

Габариты машины: длина 4 м, ширина 2 м, высота 2 м. Расчетная точка находится на расстоянии 1 м от поверхности машины.

Решение:

Площадь воображаемой поверхности, окружающей источник и проходящей через расчетную точку:

$$S = (6 \cdot 3) \cdot 2 + (4 \cdot 3) \cdot 2 + (6 \cdot 4) = 84 \text{ m}^2.$$

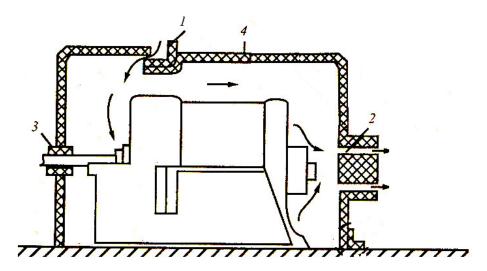


Рис. 4.1. Схема звукоизолирующего кожуха.

1, 2 – глушители в отверстиях для циркуляции воздуха; 3 – глушитель в отверстии для приводов; 4 – кожух.

Допустимые уровни звукового давления принимаем по Приложению 1 для работы с повышенными требованиями к процессам наблюдения и дистанционного управления производственными циклами (строка 4 таблицы Приложения 1).

Определим поверхность источника шума:

$$S_{ucm} = (2 \cdot 4) \cdot 2 + (2 \cdot 2) \cdot 2 + (2 \cdot 4) = 32 \text{ m}^2.$$

Будем устанавливать стенки кожуха на расстоянии 0,5 м от агрегата (рисунок 4.2). Выбираем кожух с плоскими гранями.

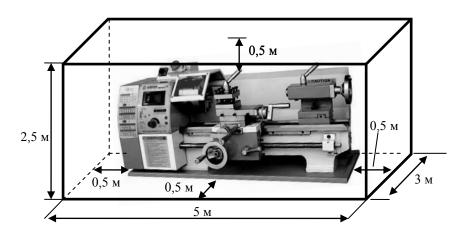


Рис. 4.2. Установка звукоизолирующего кожуха.

Считаем площадь поверхности кожуха:

$$S_{\kappa} = (5 \cdot 2.5) \cdot 2 + (3 \cdot 2.5) \cdot 2 + (3 \cdot 5) = 55 \text{ m}^2.$$

Определим требуемую эффективность кожуха для октавных полос по формуле (2.1):

Затем по формуле (2.3) рассчитываем требуемую звукоизолирующую способность стенок кожуха $R_{\kappa.mp}$, дБ. Расчет сводим в таблицу 4.1.

Таблица 4.1.

Величина	C	реднегеоме	трическа	я частот	га октавн	юй поло	сы, Гц	
	63	125	250	500	1000	2000	4000	8000
Излучаемая звуковая мощность источника L_p , дБ	95	110	116	125	130	126	118	120
$L_{\partial on}$, дБ (прил.1)	103	96	91	88	85	83	81	80
$10lg S (S=84 \text{ m}^2)$	19	19	19	19	19	19	19	19
ΔL _{эф.тр} , дБ	-27	-5	6	18	26	24	18	21
10 <i>lg S_к/ S_{ucm}.</i> , дБ	3	3	3	3	3	3	3	3
<i>R</i> _{к.тр.} , дБ	-19 Не тре- буется	-2 Не тре- буется	14	21	29	27	21	24
<i>Rcm</i> ₁ , дБ (3x2,5)	13	18	23	27	32	37	40	24
<i>Rcm</i> ₂ , дБ (5x2,5)	14	19	24	28	33	38	42	24
<i>Rcm</i> ₃ , дБ (крышка 5х3)	14	19	24	28	33	38	42	24
<i>Rглушителей</i> , дБ	18	18	20	25	33	38	40	34
R_{cp} , дБ	13,7	18,7	23,7	27,7	32,7	37,7	41,4	24

Подбираем по таблице 3.2 материал для стенок кожуха: дюралюминиевый сплав толщиной 2 мм. Из таблицы 3.2 определяем звукоизоляцию стенок кожуха (выбираем ближайшие значения: для стенки 5х2.5 берем значения для стенки 5х3, а для стенки 3х2.5 берем значения для 3х3). Если звукоизоляция стенок кожуха меньше $R_{\kappa.mp.}$, используем дополнительную звукоизоляцию, характеристики которой указаны в таблице 2.1. В нашем случае дополнительной звукоизоляции не требуется.

Глушители шума, через которые осуществляется доступ воздуха под кожух, встроенные в проемы кожуха, должны обладать эффективностью не ниже $R_{\kappa.mp}$. Характеристики глушителей подбираются по таблице Приложения 2. В нашем случае выбираем кольцевые глушители с односторонней облицовкой, шириной щели 20 мм, площадью свободного сечения не более 0,015 м 2 и длиной 0,5 м.

Определяем среднюю звукоизоляцию R_{cp} кожуха по формуле (3.1), учитывая площади и звукоизоляцию глушителей, находящихся на верхней крышке и боковых гранях (размером 3x2,5) корпуса.

Так, например, для октавной полосы 500 Гц получаем:

$$R_{cp} = 10\lg \left[\frac{55}{2 \cdot (7,5-0,015) \cdot 10^{-2,7} + 2 \cdot 12,5 \cdot 10^{-2,8} + 2 \cdot (15-0,015) \cdot 10^{-2,7} + 3 \cdot 0,015 \cdot 10^{-2,5}} \right] \cong 27,7 \, \mu \delta$$

Далее проверяем на соответствие условию $R_{cp} \ge R_{\kappa.mp}$. во всех частотных полосах. В нашем случае указанное условие выполняется для всех октавных полос.

5. <u>Задание на контрольную работу № 1 «Расчет звукоизолирующего кожуха»</u>

Требуется спроектировать звукоизолирующий кожух (рис 2.2).

Машина электрическая и поэтому требует охлаждения. Для этого в кожухе предусмотрены отверстия для циркуляции воздуха. Спектр звуковой мощности, излучаемой машиной, и габариты машины приведены в таблице исходных данных 2.4.

Расчетная точка находится на расстоянии 1 м от поверхности машины. При проведении расчета необходимо:

определить требуемую звукоизоляцию стенок кожуха;

подобрать материал стенок, глушители для отверстий;

проверить среднюю звукоизоляцию спроектированного кожуха на соответствие требуемой звукоизоляции кожуха.

Варианты исходных данных указаны в таблице 5.1.

Таблица 5.1 ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА

TT	пслодные дли гасчета														
Номера исходных данных				Знач	чения										
		Габо	ариты м	іашины: д	лина; ши	рина; вь	ісота:								
1	- 4 м;	2м;2	M												
2	- 3 м;	1,5 м; 1м													
3	- 2 м; 1	- 2 м; 1 м; 1 м													
4	- 3 м;	- 3 м; 2 м; 1 м													
5	- 2; 1 M	- 2; 1 м; 2 м													
		Допустимые уровни звукового давления (ПС)													
6	- для вы	- для высококвалифицированной работы, требующей сосредоточен-													
	ности (ности (строка 2 таблицы Приложения 1)													
7	- для ра	- для работы, выполняемой с часто получаемыми указаниями и аку-													
	стичесь	стическими сигналами и требующей постоянного слухового кон-													
	троля (троля (строка 3 таблицы Приложения 1)													
8	- для работы с повышенными требованиями к процессам наблюде-														
	ния и дистанционного управления производственными циклами														
	· · ·			ожения 1											
	(звуковой											
			_	ическая ча			1								
	63	125	250	500	1000	2000	4000	8000							
1	2	3	4	5	6	7	8	9							
9	96	89	83	80	77	75	73	71							
10	103	96	91	88	85	83	81	80							
11	107	101	97	93	91	89	87	86							
12	112	106	102	99	97	95	93	92							
13	117	112	108	105	103	101	99	98							
14	110	106	113	122	131	130	132	132							
15	108	112	117	122	128	128	127	126							
16	95	105	105	105	113	109	101	92							
17	99	102	106	109	109	107	106	101							
18	90	88	87	87	81	79	75	66							

Порядковый			
номер слуша-			
теля в группе		Номера исходных даннь	IX
(номер вариан-			
та работы)			
1	5	6	9
2	4	6	10
3	3	7	11
4	2	8	12
5	1	8	13
6	5	7	14
7	4	7	15
8	3	8	16
9	2	8	17
10	1	6	18
11	4	7	9
12	5	8	10
13	2	6	11
14	3	6	12
15	3	7	13
16	1	7	14
17	2	7	15

Далее устанавливается следующее соответствие: порядковому номеру слушателя 18 соответствует первый вариант задания, 19-му – второй, 20-му – третий и т.д.

Титульный лист работы необходимо оформить следующим образом:

АКАДЕМИЯ ГОСУДАРСТВЕННОЙ ПРОТИВОПОЖАРНОЙ СЛУЖБЫ МИНИСТЕРСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ

Дисциплина «БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ»

КОНТРОЛЬНАЯ РАБОТА №1

«РАСЧЕТ ЗВУКОИЗОЛИРУЮЩЕГО КОЖУХА ПРОМЫШЛЕННОГО ОБОРУДОВАНИЯ»

Дата выполнения

№ варианта

Фамилия, Имя, отчество исполнителя

Приложение 1 ПРЕДЕЛЬНО ДОПУСТИМЫЕ УРОВНИ ЗВУКОВОГО ДАВЛЕНИЯ, УРОВНИ ЗВУКА И ЭКВИВАЛЕНТНЫЕ УРОВНИ ЗВУКА ДЛЯ ОСНОВНЫХ НАИБОЛЕЕ ТИПИЧНЫХ ВИДОВ ТРУДОВОЙ ДЕЯТЕЛЬНОСТИ И РАБОЧИХ МЕСТ

No	Вид трудовой деятельности, рабочее место							тавны	х поло	cax co	Уровни	
ПП			сре	еднегес	ометри	чески	ми час	готами	і, Гц		звука и	
											эквива-	
						1	•		1		уровни	
		31,5	63	125	250	500	1000	2000	4000	8000	звука (в	
											дБА)	
1	2	3	4	5	6	7	8	9	10	11	12	
1	Творческая деятельность, руководящая работа	86	71	61	54	49	45	42	40	38	50	
	с повышенными требованиями, научная дея-											
	тельность, конструирование и проектирова-											
	ние, программирование, преподавание и обу-											
	чение, врачебная деятельность. Рабочие места											
	в помещениях дирекции, проектно-											
	конструкторских бюро, расчетчиков, про-											
	граммистов вычислительных машин, в лабо-											
	раториях для теоретических работ и обработ-											
2	ки данных, приема больных в здравпунктах	93	79	70	68	58	55	50	50	40	60	
2	Высококвалифицированная работа, требую-	93	19	70	08	38	55	52	52	49	60	
	щая сосредоточенности, административно-											
	управленческая деятельность, измерительные											
	и аналитические работы в лаборатории; рабо-											
	чие места в помещениях цехового управленческого аппарата, в рабочих комнатах контор-											
	ских помещений, в лабораториях											

Продолжение приложения 1

_	Продолжение приложения 1										
1	2	3	4	5	6	7	8	9	10	11	12
3	Работа, выполняемая с часто получаемыми	96	83	74	68	63	60	57	55	54	65
	указаниями и акустическими сигналами; ра-										
	бота, требующая постоянного слухового кон-										
	троля; операторская работа по точному гра-										
	фику с инструкцией; диспетчерская работа.										
	Рабочие места в помещениях диспетчерской										
	службы, кабинетах и помещениях наблюде-										
	ния и дистанционного управления с речевой										
	связью по телефону; машинописных бюро, на										
	участках точной сборки, на телефонных и те-										
	леграфных станциях, в помещениях мастеров,										
	в залах обработки информации на вычисли-										
	тельных машинах										
4	Работа, требующая сосредоточенности; рабо-	103	91	83	77	73	70	68	66	64	75
	та с повышенными требованиями к процессам										
	наблюдения и дистанционного управления										
	производственными циклами. Рабочие места										
	за пультами в кабинах наблюдения и дистан-										
	ционного управления без речевой связи по те-										
	лефону, в помещениях лабораторий с шум-										
	ным оборудованием, в помещениях для раз-										
	мещения шумных агрегатов вычислительных										
	машин										

Продолжение приложения 1

1	2	3	4	5	6	7	8	9	10	11	12
5	5 Выполнение всех видов работ (за исключени-		95	87	82	78	75	73	71	69	80
	ем перечисленных в п.п. 1-4 и аналогичных										
	им) на постоянных рабочих местах в произ-										
	водственных помещениях и на территории										
	предприятий										
6	Рабочие места водителей и обслуживающего	100	87	79	72	68	65	63	61	59	70
	персонала грузовых автомобилей										
7	7 Рабочие места водителей и обслуживающего		95	87	82	78	75	73	71	69	80
	персонала тракторов, самоходных шасси,										
	прицепных и навесных сельскохозяйственных										
	машин, строительно-дорожных и др. анало-										
	гичных машин										
	Пассажирские и т	ранспо	ртные	самол	еты и	вертол	еты				
8	Рабочие места в кабинах и салонах самолетов										
	и вертолетов:										
	допустимые	107	95	87	82	78	75	73	71	69	80
	оптимальные	96	83	74	68	63	60	57	55	54	65

ЗВУКОИЗОЛЯЦИЯ ГЛУШИТЕЛЕЙ $\Delta L_{\GammaЛ}$, ДБА

Тип глушителя	Ширина	Площадь	Длина,	Cp	еднеге	ометрич	еская ч	астота о	ктавной	полосы	і, Гц
	щели,	свободного	M	63	125	250	500	1000	2000	4000	8000
	MM	сечения, м2									
Кольцевые и щеле-	40	0,035	0,25	15	13	13	14	17	19	20	17
вые глушители с			0,5	18	18	20	25	33	38	40	34
двусторонней об-			0,75	20	22	27	36	45	45	45	40
лицовкой			1	23	26	35	45	45	45	45	40
	30	0,022	0,25	17	16	15	17	19	24	26	25
			0,5	20	22	24	31	40	45	45	45
			0,75	22	27	33	45	45	45	45	45
			1	25	32	40	45	45	45	45	45
	20	0,015	0,25	19	20	19	21	26	32	38	40
			0,5	22	29	32	38	45	45	45	40
			0,75	26	38	40	45	45	45	45	40
			1	30	40	40	45	45	45	45	40
Кольцевые глуши-	20	Не более	0,25	15	13	13	14	17	19	20	17
тели с односторон-		0,015	0,5	18	18	20	25	33	38	40	34
ней облицовкой			0,75	20	22	27	36	45	45	45	40
			1	23	26	35	45	45	45	45	40
	10	Не более	0,25	19	20	19	21	26	32	38	40
		0,01	0,5	22	29	32	38	45	45	45	40
			0,75	26	38	40	45	45	45	45	40
			1	30	40	40	45	45	45	45	40