МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И АВТОМАТИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)»

ТЕОРИЯ ВЕРОЯТНОСТЕЙ МАТЕМАТИЧЕСКАЯ СТАТИСТИКА СЛУЧАЙНЫЕ ПРОЦЕССЫ

КОНТРОЛЬНЫЕ ЗАДАНИЯ

Для студентов очно-заочного обучения факультетов Электроники, ИТ и РТС

Составители: Д.Л. Кудрявцев, О.А.Малыгина, Е.С. Мироненко, Т.А. Морозова, И.Н. Руденская, Л.И. Таланова

Контрольные задания, разработанные кафедрой высшей математики 2 МИРЭА, содержат типовой расчет по теории вероятностей. Включены все основные типы задач по темам: случайные события, случайные величины, функции случайных величин, многомерные случайные величины и математическая статистика, входящие в программу ІІ курса дневного отделения. Типовой расчет выполняется студентами в письменном виде и сдается преподавателю до начала зачетной сессии. Приведенные в пособии вопросы к экзамену могут быть уточнены и дополнены лектором.

Печатаются по решению редакционно-издательского совета университета.

Рецензенты:

© МИРЭА, 2014

Контрольные задания напечатаны в авторской редакции

Подписано в печать . Формат . Усл. печ. л. . Усл. кр.-отт. . Уч.-изд. л. Тираж 100 экз. С 82

Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт радиотехники, электроники и автоматики (технический университет)" 119454, Москва, пр. Вернадского, 78

ТИПОВОЙ РАСЧЕТ

ЧАСТЬ 1. СЛУЧАЙНЫЕ СОБЫТИЯ

Задача 1.1.

- 1. В урне 7 белых, 10 черных и 13 красных шаров. Случайным образом вынимают три шара. Какова вероятность того, что среди выбранных шаров: а) 1 белый, 1 черный и 1 красный шар; б) хотя бы один чёрный шар.
- 2. В урне 6 белых, 9 черных и 11 красных шаров. Наугад вынимают четыре шара. Найти вероятность того, что: а) среди них 1 красный, 2 черных и 2 белых; б) среди выбранных шаров хотя бы один красный.
- 3. В коробке 20 деталей. Из них 10 стандартные, 6 отличного качества и 4 бракованные. Наугад взяли 4 деталей. Какова вероятность того, что среди этих четырёх: а) одна бракованная и одна отличного качества; б) только стандартные детали.
- 4. В коробке 25 деталей. Из них 15 стандартные, 6 отличного качества и 4 —бракованные. Случайным образом взяли 6 деталей. Какова вероятность того, что среди этих шести деталей: а) 2 стандартные и 1 отличного качества; б) хотя бы 2 детали отличного качества.
- 5. Студент знает 10 вопросов из 22. В билете 3 вопроса. Чтобы сдать экзамен, надо ответить хотя бы на два любых вопроса. Какова вероятность того, что: а) студент сдаст экзамен; б) не сдаст.
- 6. Из 15 лотерейных билетов 5 выигрышных, причем 1 из них выигрывает главный приз. Наудачу купили 4 билета. Найти вероятность того, что среди купленных билетов: а) нет выигрышных; б) 2 выигрышных, причем один из них выигрывает главный приз.
- 7. Из 22 лотерейных билетов 6 выигрышных. По трем билетам выигрыш -100 руб., по двум 1тыс. руб., и один билет дает

выигрыш в 5 тыс. руб. Наудачу купили 5 билетов. Найти вероятность того, что: а) нет выигышных билетов; б) 2 билета выиграли 100 руб., один – 1 тыс. руб. и остальные без выигрыша.

- 8. В группе учится 20 человек. Среди них 3 отличника, 7 учатся без троек и 10 человек учится посредственно (троечники). Комиссия случайным образом выбрала для тестирования трёх человек. Найти вероятность того, что среди них окажутся: а) нет троечников; б) хотя бы один отличник.
- 9. Из 20 вопросов студент знает 10 хорошо, 7 посредственно и 3 совсем не знает. В билете 4 вопроса. Найти вероятность того, что: а) 2 из них студент не знает и 1 знает хорошо; б) хотя бы два вопроса знает.
- 10. На полке находятся 12 сборников стихов. В 3-х из них содержится нужное ученику стихотворение. Ученик взял 4 книги. Найти вероятность того, что он : а) нашел нужное стихотворение; б) нужное стихотворение нашлось только в одной из взятых книг.
- 11. В магазине 20 калькуляторов трех разных производителей: А, В и С, причем производства компании А-7 шт., В -8 шт., и С-5 шт. Наугад куплено пять калькуляторов. Найти вероятность того, что : а) среди купленных калькуляторов нет произведённых компанией С; б) среди купленных хотя бы два произведены компанией С.
- 12. В корзине сидят 10 котят: 3 черных, 3 рыжих, 2 белых и 2 серых. Наугад взяли трех котят. Найти вероятность того, что взяли: а) черного, белого и рыжего котенка; б) хотя бы одного черного.
- 13. В коробке находится 18 ручек: 10 синих, 4 красных и 4 черных. Наугад взяли 5 ручек. Найти вероятность того, что среди взятых ручек: а) две красные и одна синяя; б) хотя бы одна красная.
- 14. В коробке находится 15 игрушек: 8 кукол, 5 мишек и 2 машинки. Наугад взяли 5 игрушек. Какова вероятность того, что

среди выбранных игрушек: а) одна кукла и одна машинка; б) нет мишек.

15. В коробке находится 12 игрушек: 7 кукол, 3 мишки и 2 машинки. Наугад взяли 4 игрушки. Какова вероятность того, что среди выбранных игрушек: а) хотя бы одна машинка; б) 2 куклы, 1 мишка и одна машинка.

Задача 1.2.

Надежность схемы – вероятность ее работы за время t.

p - надежность элемента; q - вероятность отказа элемента.

Элементы выходят из строя независимо друг от друга.

Варианты 1, 9 (рис.1).

1. $p \circ = 0.8$ p = 0.9. Найти надежность схемы.

9. $q \circ = 0.2$ q = 0.1. Найти вероятность отказа схемы.

Варианты 2, 10 (рис.2)

2. $p \circ = 0.8$ p = 0.9. Найти надежность схемы.

10. $q \circ = 0,2$ q = 0,1. Найти вероятность отказа схемы.

Варианты 3, 11 (рис.3).

3. $p \circ = 0.8$ p = 0.9. Найти надежность схемы.

11. $q \circ = 0,2$ q = 0,1. Найти вероятность отказа схемы.

Варианты 4, 12 (рис.4).

4. $p \circ = 0.8$ $p \square = 0.9$. Найти надежность схемы.

12. $q \circ = 0,2$ q = 0,1. Найти вероятность отказа схемы.

Варианты 5, 13 (рис.5).

 $5.p \circ = 0.8$ p = 0.9. Найти надежность схемы.

13. $q \circ = 0,2$ q = 0,1. Найти вероятность отказа схемы.

Варианты 6, 14 (рис.6).

6. $p \circ = 0.8$ p = 0.9. Найти надежность схемы.

14. $q \circ = 0,2$ $q \square = 0,1$. Найти вероятность отказа схемы.

Варианты 7, 15 (рис.7).

7. $p \circ = 0.8$ $p \square = 0.9$. Найти надежность схемы.

15. q ○ = 0,2 q □ = 0,1. Найти вероятность отказа схемы.

Варианты 8, 16 (рис.8).

8. $p \circ = 0.9$ $p \Box = 0.7$. Найти внадежность схемы.

16. $q \circ = 0,2$ q = 0,1. Найти вероятность отказа схемы.

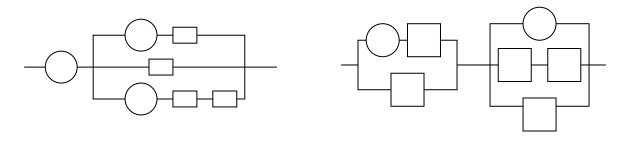


Рис. 1

Рис.2

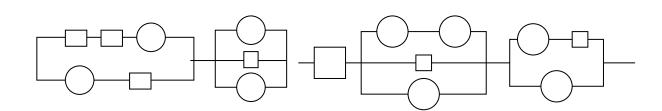


Рис. 3

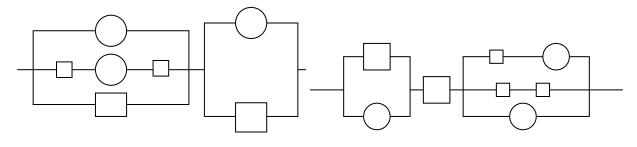


Рис. 5

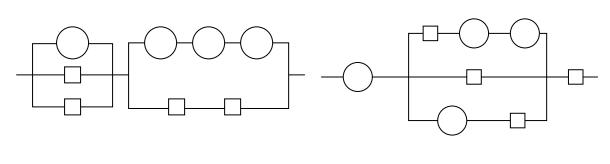


Рис. 7

Задача 1.3.

- 1. На сборку поступают однотипные изделия из трех цехов. Вероятности изготовления бракованного изделия первым, вторым и третьим цехами равны 0,04; 0,01; 0,02, соответственно. Все поступающие на сборку изделия складываются вместе. Из первого цеха поступает в два раза больше изделий, чем из второго, а из третьего в три раза меньше, чем из второго.
- а) Найти вероятность того, что взятое наугад изделие окажется бракованным.
- b) Взятое наугад изделие оказалось бракованным. Найти вероятность того, что оно изготовлено в третьем цехе.
- 2. В группе спортсменов 10 лыжников, 5 сноубордиста и 5 бобслеистов. Вероятность выполнить квалификационную норму для лыжника равна 0,85, для сноубордиста 0,7, для бобслеиста 0,9.
- а) Найти вероятность того, что выбранный наудачу спортсмен выполнит норму.
- b) Случайно выбранный спортсмен выполнил квалификационную норму. Найти вероятность того, что этот спортсмен лыжник.
- 3. Имеются три урны. В первой из них 6 белых и 5 черных шаров, во второй урне 5 белых и 4 черных шара, а в третьей 7 белых и 3 черных шара. Наугад выбирают одну из урн и вынимают из нее шар.
 - а) Найти вероятность того, что этот шар белый.
 - b) Наудачу выбранный шар оказался белым. Найти веро-

ятность того, что этот шар из второй урны.

- 4. Пассажир покупает билет. Он может обратиться в одну из трех касс. Вероятность обращения в первую кассу равна 0,5, во вторую 0,35 и в третью 0,15. Вероятность того, что к приходу пассажира имеющиеся в кассе билеты будут проданы, равна для первой кассы 0,4, для второй 0,2, третьей 0,6.
 - а) Найти вероятность того, что пассажир купит билет.
- b) Пассажир купил билет. Найти вероятность того, что пассажир купил его во второй кассе.
- 5. Три станка, производительности которых относятся как 5:3:2, выпускают одинаковые детали, при этом первый станок дает 70% деталей высшего сорта, второй 40%, третий 60%.
 - а) Найти вероятность того, что наугад взятая деталь будет высшего сорта.
 - b) Взятая наудачу деталь оказалась высшего сорта. Найти вероятность того, что она изготовлена на третьем станке.
 - 6. В магазин поступают магнитофоны с трех заводов. Производительность первого в два раза меньше производительности второго, а третьего – в три раза больше первого. Вероятности того, что магнитофон выдержит гарантийный срок, соответственно равны 0,85; 0,92; 0,95.
 - а) Найти вероятность того, что купленный магнитофон выдержит гарантийный срок.
 - b) Случайно выбранный магнитофон выдержал гарантийный срок. Найти вероятность того, что магнитофон изготовлен на первом заводе.
 - 7. Игрок может выбрать наугад один из трех лабиринтов. Известно, что вероятности его выхода из различных лабиринтов за 5 минут равны соответственно 0,5; 0,6; 0,4.
 - а) Найти вероятность того, что игрок выйдет из любого лабиринта за 5 минут.
 - b) Игрок вышел из лабиринта. Найти вероятность того, что игрок выбрал второй лабиринт.
 - 8. На сборку поступают детали с трех станков. Со второго станка поступает в два раза больше, чем с первого, а с третьего в три раза больше, чем с первого. Первый станок дает 2% брака,

- второй -1,7% и третий -2,4% брака.
- а) Найти вероятность того, что взятая наугад деталь окажется годной.
- b) Взятая наугад деталь оказалась годной. Найти вероятность того, что деталь изготовлена на третьем станке.
- 9. В первой и во второй группах одинаковое число студентов, а в третьей в два раза больше, чем во второй. Количество отличников составляет 10% в первой, 7% во второй и 5% в третьей группе.
- а) Найти вероятность того, что случайно вызванный студент отличник.
- b) Случайно вызванный студент отказался отличником. найти вероятность того, что он учится в первой группе.
- 10. С первого завода на сборку поступило 500, со второго 1000 и с третьего 1500 лампочек. Вероятности выпуска бракованных лампочек этими заводами равны соответственно 0,03; 0,02 и 0,01.
- а) Найти вероятность того, что взятая наугад лампочка окажется бракованной.
- b) Взятая наугад лампочка оказалась бракованной. Найти вероятность того, что лампочка изготовлена на втором заводе.
- 11. Рабочий обслуживает три станка, на которых обрабатываются однотипные болты. Вероятность брака для первого станка равна 0,02, для второго -0,01, для третьего -0,03. Обработанные детали складываются в один ящик. Производительности станков относятся как 5:3:2.
- а) Найти вероятность того, что взятая наугад деталь будет бракованная.
- b) Взятая наугад деталь оказалась бракованной. Найти вероятность того, что деталь изготовлена на первом заводе.
- 12. На фабрике изготавливают изделия определенного вида на трех поточных линиях. На первой линии производят 55% изделий, на второй 35%, на третьей остальную часть продукции. Каждая из линий характеризуется соответственно следующими процентами годности изделий: 98%, 97%. 95%.
 - а) Найти вероятность того, что наугад взятое изделие, вы-

пущенное предприятием, окажется бракованным.

- b) Взятое наугад изделие оказалось бракованным. Найти вероятность того, что изделие поступило со второй линии.
- 13. В первом ящике содержится 20 деталей, из которых 15 стандартных, во втором 30 деталей, из них 26 стандартных, в третьем 10 деталей, из них 7 стандартных. Из случайно выбранного ящика наудачу взята деталь.
- а) Найти вероятность того, что взятая наудачу деталь стандартная.
- b) Взятая наудачу деталь оказалась стандартной. Найти вероятность того, что деталь взята из первого ящика.
- 14. Имеются три ящика с шарами. В первом ящике находятся 8 красных и 4 белых шара, во втором ящике 8 красных и 2 белых, а в третьем 2 красных и 5 белых шаров. Наудачу выбирается ящик и из него извлекается шар.
 - а) Найти вероятность того, что выбрали белый шар.
- b) Выбран белый шар. Найти вероятность того, что шар извлечен из третьего ящика.
- 15. Семена для посева поступают на ферму из трех семеноводческих хозяйств, причем первое и второе хозяйства присылают по 35% всех семян. Всхожесть семян из первого хозяйства 95%, второго 75%, а третьего 80%.
- а) Найти вероятность того, что наудачу взятое семя не взойдет.
- b) Взятое наудачу семя не взошло. Найти вероятность того, что семя получено из второго хозяйства.

ЧАСТЬ 2. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Задача 2.1

Варианты 1, 7, 13

Баскетболист три раза бросает по кольцу. Вероятности попаданий при каждом броске соответственно равны p_1, p_2 и p_3 . Для случай-

ной величины, равной числу попаданий при трёх бросках, составить ряд распределения, найти её математическое ожидание и дисперсию, построить график функции распределения.

№ вар. р₁ р₂ р₃ 1 0,5 0,6 0,7 7 0,4 0,5 0,6 13 0,6 0,7 0,8

Варианты 2, 8, 14

Стрелок три раза стреляет в мишень. Вероятности попаданий при каждом выстреле соответственно равны p_{1} , p_{2} и p_{3} . Для случайной величины, равной числу промахов при трёх выстрелах, составить ряд распределения, найти её математическое ожидание и дисперсию, построить график функции распределения.

№вар. р₁ р₂ р₃
2 0,6 0,5 0,7
8 0,4 0,7 0,6
14 0,6 0,7 0,8

Варианты 3, 9, 15

Прибор последовательно испытывается на надёжность три раза. Вероятности отказов при первом, втором и третьем испытаниях соответственно равны p_1 , p_2 и p_3 . Для случайной величины, равной номеру испытания при котором произошёл первый отказ, составить ряд распределения, найти её математическое ожидание и дисперсию, построить график функции распределения.

№ вар. p_1 p_2 p_3 3 0,1 0,2 0,3 9 0,2 0,3 0,35

Варианты 4, 10, 16

Три футболиста бьют пенальти по одному разу. Вероятности успешного выполнения одинадцатиметрового штрафного удара для них соответственного равны p_1 , p_2 и p_3 . Для случайной величины, равной числу голов при исполнении пенальти тремя игроками, составить ряд распределения, найти её математическое ожидание и дисперсию, построить график функции распределения.

```
№ вар. р<sub>1</sub> р<sub>2</sub> р<sub>3</sub>
4 0,6 0,5 0,7
10 0,5 0,6 0,7
16 0,6 0,8 0,9
```

Варианты 5, 11, 17

Вероятности выполнить норму для каждого из трёх спортсменов соответственно равны p_1 , p_2 и p_3 . Для случайной величины, равной числу спортсменов не выполнивших норму, составить ряд распределения, найти её математическое ожидание и дисперсию, построить график функции распределения.

```
№ вар. р<sub>1</sub> р<sub>2</sub> р<sub>3</sub>
5 0,7 0,6 0,7
11 0,6 0,8 0,9
17 0,8 0,7 0,9
```

Варианты 6, 12, 18

Три стрелка стреляют в мишень по одному разу. Вероятности промахов для них соответственно равны p_1 , p_2 и p_3 . Для случайной величины, равной числу попаданий в мишень, построить ряд распределения, найти её математическое ожидание и дисперсию, построить график функции распределения.

№ вар. р₁ р₂ р₃
6 0,1 0,2 0,3
12 0,2 0,3 0,4
18 0,4 0,2 0,5

Задача 2.2. Варианты 1-6.

Ведется стрельба по цели. ξ - дискретная случайная величина — число попаданий в цель.

- А) Было произведено N1 независимых выстрелов с вероятностью попадания р1 при каждом выстреле. Найти математическое ожидание ξ , дисперсию ξ , вероятность того что будет не более M1 попаданий в цель.
- Б) Было произведено N2 выстрелов с вероятностью попадания р2 при каждом выстреле. Найти математическое ожидание ξ , дисперсию ξ , вероятность того, что будет M2 попадания в цель.

N вар.	1	2	3	4	5	6
N1	12	11	10	9	7	8
M1	10	9	8	1	2	1
p1	0.6	0.7	0.8	0.9	0.95	0.75
N2	250	300	350	400	450	550
M2	0	1	2	3	4	5
p2	0.01	0.02	0.03	0.03	0.02	0.01

Варианты 7-12.

Устройство содержит некоторое количество одинаково надежных элементов, которые могут отказывать независимо друг от друга с одинаковой вероятностью. ξ - дискретная случайная величина — число отказавших элементов.

- А) Число элементов N1, вероятность отказа каждого элемента p1. Найти математическое ожидание ξ , дисперсию ξ . Какова вероятность того, что откажет более 2-х элементов?
- Б) Число элементов N2, вероятность отказа р2. Найти математическое ожидание ξ , дисперсию ξ . Какова вероятность того, что откажет хотя бы один элемент?

N вар.	7	8	9	10	11	12
N1	12	11	10	9	8	7
p1	0.1	0.2	0.25	0.3	0.35	0.4
N2	1000	500	200	800	600	300
p2	0.003	0.01	0.005	0.02	0.001	0.01

Варианты 13-18.

При передаче сигнала возможно его искажение. ξ - дискретная случайная величина — число искаженных сигналов.

- А) Число сигналов N1, вероятность искажения сигнала p1. Найти математическое ожидание ξ , дисперсию ξ . Какова вероятность того, что будет искажено не более одного сигнала?
- Б) Число сигналов N2, вероятность искажения сигнала p2. Найти математическое ожидание ξ , дисперсию ξ . Какова вероятность того, что будет искажено более 2-х сигналов?

N вар.	13	14	15	16	17	18
N1	12	11	10	9	8	7

p1	0.4	0.35	0.3	0.25	0.2	0.1
N2	100	200	500	200	600	1000
p2	0.01	0.03	0.02	0.01	0.008	0.005

Задача 2.3

Дана функция распределения непрерывной случайной величины F(x). Найти плотность распределения f(x), параметр A, вероятность попадания непрерывной случайной величины в интервал (α, β) , математическое ожидание и дисперсию непрерывной случайной величины. Построить графики f(x) и F(x).

1.
$$F(x) = \begin{cases} 0, & x \le 0 \\ A(4x - x^2), & x \in (0; 2] \\ 1, & x > 2 \end{cases}$$
 $\alpha = 0, \beta = 1$

2.
$$F(x) = \begin{cases} 0, & x \le -\frac{\pi}{3} \\ A\sin 3x, & x \in (-\frac{\pi}{3}; -\frac{\pi}{6}] \\ 1, & x > -\frac{\pi}{6} \end{cases}$$
 $\alpha = -\frac{\pi}{3}, \quad \beta = -\frac{\pi}{4}$

3.
$$F(x) = \begin{cases} 0, & x \le 0 \\ Aarctgx, & x \in (0, 1] \\ 1, & x > 1 \end{cases}$$
 $\alpha = 0, \beta = \frac{\sqrt{3}}{3}$

4.
$$F(x) = \begin{cases} 0, & x \le 1 \\ A(x-1)^3, & x \in (1;3] \\ 1, & x > 3 \end{cases} \quad \alpha = 1, \quad \beta = 2$$

5.
$$F(x) = \begin{cases} 0, & x \le \frac{3\pi}{2} \\ A\cos\frac{x}{3}, & x \in (\frac{3\pi}{2}; 3\pi] \\ 1, & x > 3\pi \end{cases} \quad \alpha = \frac{3\pi}{2}, \quad \beta = \frac{3\pi}{4}$$

6.
$$F(x) = \begin{cases} 0, & x \le -2 \\ A(x+2)^2, & x \in (-2, 0] \end{cases} \quad \alpha = -1, \quad \beta = 0$$

7.
$$F(x) = \begin{cases} 0, & x \le 0 \\ A\sin\frac{x}{2}, & x \in (0; \pi] \\ 1, & x > \pi \end{cases} \qquad \alpha = \frac{\pi}{5}, \quad \beta = \pi$$
8.
$$F(x) = \begin{cases} 0, & x \le 0 \\ A\arcsin x, & x \in (0; 1] \\ 1, & x > 1 \end{cases} \qquad \alpha = 0, \quad \beta = \frac{1}{2}$$

8.
$$F(x) = \begin{cases} 0, & x \le 0 \\ A \arcsin x, & x \in (0; 1] \end{cases} \quad \alpha = 0, \quad \beta = \frac{1}{2}$$

9.
$$F(x) = \begin{cases} 0, & x \le 0 \\ Ax^3, & x \in (0;2] \\ 1, & x > 2 \end{cases} \quad \alpha = 1, \quad \beta = 2$$

10.
$$F(x) = \begin{cases} 0, & x \le -\frac{\pi}{4} \\ A\cos 2x, & x \in (-\frac{\pi}{4}; 0] \end{cases} \quad \alpha = -\frac{\pi}{4}, \quad \beta = -\frac{\pi}{6} \end{cases}$$

11.
$$F(x) = \begin{cases} 0, & x \le 0 \\ A(6x - x^2), & x \in (0, 3] \\ 1, & x > 3 \end{cases} \quad \alpha = 0, \quad \beta = 1$$

12.
$$F(x) = \begin{cases} 0, & x \le -\frac{\pi}{2} \\ A\sin 2x, & x \in (-\frac{\pi}{2}; -\frac{\pi}{4}] \\ 1, & x > -\frac{\pi}{4} \end{cases}$$
 $\alpha = -\frac{\pi}{3}, \quad \beta = -\frac{\pi}{4}$

13.
$$F(x) = \begin{cases} 0, & x \le 0 \\ Aarctg2x, & x \in (0; 0, 5] \\ 1, & x > 0, 5 \end{cases} \qquad \alpha = 0, \quad \beta = \frac{\sqrt{3}}{6}$$
14.
$$F(x) = \begin{cases} 0, & x \le -1 \\ A(x+1)^3, & x \in (-1; 1] \\ 1, & x > 1 \end{cases} \qquad \alpha = 0, \quad \beta = 1$$

14.
$$F(x) = \begin{cases} 0, & x \le -1 \\ A(x+1)^3, & x \in (-1;1] \\ 1, & x > 1 \end{cases} \quad \alpha = 0, \quad \beta = 1$$

15.
$$F(x) = \begin{cases} 0, & x \le \pi \\ A\cos\frac{x}{2}, & x \in (\pi, 2\pi] \\ 1, & x > 2\pi \end{cases} \quad \alpha = \pi, \quad \beta = \frac{4\pi}{3}$$

Задача 2.4.

Вариант 1. Измерительный прибор не имеет систематической ошибки, а средняя квадратическая ошибка равна 75. Какова вероятность, что ошибка измерения не превзойдет по абсолютной величине 45 (закон распределения - нормальный).

Вариант 2. Точность изготовления деталей характеризуется систематической ошибкой 2 мм, а случайное отклонение распределено по нормальному закону со средней квадратической ошибкой 10 мм. Какова вероятность, что отклонение длины изделия от стандарта находится в пределах от 8 до 12 мм?

Вариант 3. Систематическая ошибка высотомера равна нулю, а случайные ошибки распределены по нормальному закону. Какую среднюю квадратическую ошибку должен иметь высотомер, чтобы с вероятностью 0,95 ошибка измерения высоты по абсолютной величине была меньше 50 м?

Вариант 4. Каким должен быть допуск отклонения размера детали от номинала, чтобы с вероятностью 0,9 отклонение было допустимым, если систематическая ошибка отклонения отсутствует, а средняя квадратическая равна 25 мм (закон распределения - нормальный)?

Вариант 5. Деталью высшего качества считается такая, у которой отклонение размера от номинала не превосходит по абсолютной величине 4,3 мк. Случайное отклонение распределено по нормальному закону. Найти среднюю квадратическую ошибку, если систематическая ошибка равна нулю, а вероятность того, что деталь высшего качества равна 0,99.

Вариант 6. Деталь, изготовленная автоматом, считается годной, если отклонение ξ контролируемого размера от номинала не превышает 8 мм. Точность изготовления деталей характеризуется среднеквадратическим отклонением, равным 4мм. Считая,

что случайная величина ξ распределена нормально, выяснить, сколько процентов годных деталей изготавливает автомат.

Вариант 7. Радиолокационная станция при измерении дальности дает систематическую ошибку 5 м., средняя квадратическая ошибка равна 10 м. Найти вероятность того, что случайная ошибка не превосходит по абсолютной величине 17 м. Закон распределения нормальный.

Вариант 8. Измерительный прибор не имеет систематической ошибки. Случайные ошибки распределены по нормальному закону, и с вероятностью 0,8 они не превосходят по абсолютной величине 12 мм. Найти среднюю квадратическую ошибку.

Вариант 9. Деталь принимается ОТК, если ее диаметр отклоняется по абсолютной величине от стандартного не более чем на 2 мм. Отклонение - случайная величина, распределенная по нормальному 'закону с систематической ошибкой 0,5 мм и среднеквадратическим отклонением 1 мм. Найти вероятность того, что деталь принимается.

Вариант 10. При испытании орудия отклонение снаряда по дальности распределено по нормальному закону с математическим ожиданием, равным нулю, и среднеквадратическим отклонением, равным 25 м. Найти вероятность того, что отклонение по дальности по абсолютной величине не превосходит 12 м.

Вариант 11. Максимальная скорость самолетов определенного типа распределена по нормальному закону с математическим ожиданием 420м/с и среднеквадратическим отклонением 25 м/с. Найти вероятность того, что при испытаниях самолета этого типа его максимальная скорость будет изменяться от 390 м/с до 440 м/с.

Вариант 12. Глубина моря измеряется прибором, систематическая ошибка которого равна нулю, а случайная распределена по нормальному закону. Найти среднеквадратическое отклонение, если при определении глубины ошибка с вероятностью 0,95 составит не более 15 м.

Вариант 13. Среднее значение расстояния до ориентира равно 1250 м. Средняя квадратическая ошибка измерения прибора E=40 м, систематическая ошибка отсутствует. С вероятностью

0,999 определить максимальную ошибку измерения расстояния.

Вариант 14. Время изготовления детали распределено по нормальному закону с математическим ожиданием 5,8с и средне-квадратическим отклонением 1,9с. Какова вероятность, что для изготовления детали потребуется от 5 до 7с?

Вариант 15. Рассеивание скорости снаряда подчинено нормальному распределению и с вероятностью 0,95 не превосходит по абсолютной величине 2 м/с. Найти среднее квадратическое отклонение рассеивания. Систематическая ошибка отсутствует.

ЧАСТЬ 3. МАТЕМАТИЧЕСКАЯ СТАТИСТИКА.

Задача 3.1

Рассчитать и построить гистограмму относительных частот по сгруппированным данным, где n_i — частота попадания вариант в промежуток $(x_i, x_{i+1}]$. Найти эмпирическую функцию распределения.

Найти выборочное среднее и несмещенную выборочную дисперсию, моду и медиану на основании данного распределения.

Найти доверительный интервал для оценки, с надежностью $\gamma = 0.95$, неизвестного математического ожидания генеральной совокупности в предположении, что она распределена нормально.

Вариант	i	$\left(x_{i}, x_{i+1}\right]$	n_{i}	Вариант	i	$\left(x_{i}, x_{i+1}\right]$	n_{i}
	1	8-10	5		1	1-5	3
	2	10-12	11		2	5-10	9
1	3	12-14	16	8	3	10-15	20
	4	14-16	10		4	15-20	12
	5	16-18	8		5	20-25	6

	1	10-14	4		1	2-8	8
	2	14-18	10		2	8-14	12
2	3	18-22	12	9	3	14-20	19
	4	22-26	9		4	20-26	11
	5	26-30	5		5	26-32	10
	1	(-6)-(-2)	3		1	14-16	5
3	2	(-2)-2	8		2	16-18	12
	3	2-6	11	10	3	18-20	30
	4	6-10	9		4	20-22	15
	5	10-14	4		5	22-24	8
	1	3-5	7		1	(-4)-2	8
4	2	5-7	8	11	2	2-8	15
	3	7-9	15		3	8-14	23
	4	9-11	7		4	14-20	14
	5	11-13	3		5	20-26	10
	1	4-7	4		1	9-11	3
5	2	7-10	6	12	2	11-13	8
	3	10-13	19		3	13-15	11
	4	13-16	7		4	15-17	9
	5	16-19	4		5	17-19	4
	1	(-8)-(-6)	5		1	3-7	3
6	2	(-6)-(-4)	10	13	2	7-11	7
	3	(-4)-(-2)	17		3	11-15	15

	4	(-2)-0	11		4	15-19	8
	5	2-2	7		5	19-23	7
	1	2-6	9		1	(-4)-0	3
7	2	6-10	12	14	2	0-4	16
	3	10-14	18		3	4-8	26
	4	14-18	13		4	8-12	14
	5	18-22	8		5	12-16	1
	1	(-1)-1	4		1	0-5	7
	2	1-3	12		2	5-10	10
15	3	3-5	17	16	3	10-15	20
	4	5-7	11		4	15-20	12
	5	7-9	6		5	20-25	6

Задача 3.2.

С надежностью 0,95 найти доверительный интервал для оценки математического ожидания, если объем выборки n=10+N, среднее выборочное x=10-N, среднее квадратическое отклонение G=N+1, где N- номер варианта.

ЧАСТЬ 4. СЛУЧАЙНЫЕ ПРОЦЕССЫ

Задача 4.1.

Цепь Маркова управляется матрицей перехода P и начальным распределением P_0 :

$$P = \begin{pmatrix} \frac{3}{N+4} & \frac{N+1}{N+4} \\ \frac{1}{N+5} & \frac{N+4}{N+5} \end{pmatrix} \qquad \vec{p}_0 = (\frac{N+1}{N+3}; \quad \frac{2}{N+3})$$

Найти распределение вероятностей по состояниям через один шаг и стационарное распределение. Построить граф состояний.

Задача 4.2. Система имеет три состояния. Построить граф состояний системы, написать уравнения Колмогорова и найти стационарное распределение. λ_{ij} – плотности перехода.

№ ва- рианта	λ_{12}	λ_{13}	λ_{21}	λ_{23}	λ_{31}	λ_{32}
1	1	1	2	3	0	0
2	2	3	0	1	0	1
3	3	1	0	2	2	0
4	1	0	2	0	1	3
5	0	0	1	2	2	3
6	0	1	3	0	2	1
7	2	3	1	3	0	0
8	2	1	0	3	0	2
9	1	1	0	2	3	0
10	3	0	1	0	2	1
11	0	0	2	2	3	1
12	0	1	2	0	1	3
13	3	1	2	1	0	0
14	2	1	0	2	0	3
15	3	2	0	2	1	0

Задача 4.3. Дана корреляционная функция и математическое ожидание случайного процесса $\xi(t)$. Найти корреляционную

функцию, математическое ожидание и дисперсию случайного процесса $\eta(t)$.

№ вари- анта	$K_{\xi}(t_1,t_2)$	$M_{\xi}(t)$	η(t)
1	$sin3t_1 sin3t_2$	e^{2t}	$td(\xi(t)+cost)/dt$
2	$cos2t_1 cos2t_2$	sin3t	$t\int_{0}^{t}\xi(\tau)d\tau+t^{5}$
3	$2t_1^3 t_2^3$	\sqrt{t}	$costd\xi/dt + e^{2t}$
4	$\sqrt{t_1}\sqrt{t_2}$	cos5t	$t^3 \sin 3t \xi(t) + \cos t$
5	$sin5t_1 sin5t_2$	t^3	$\cos t \int_{0}^{t} (\xi(\tau) + \tau^{2}) d\tau$
6	$3\cos 5t_1\cos 5t_2$	e^{3t}	$t\frac{d\xi}{dt} + \sin t$
7	$\sqrt{t_1}\sqrt{t_2} + sint_1 sint_2$	t^5	$t^2 \cos 4t \xi(t) + e^{3t}$
8	$t_1^4 t_2^4$	sin2t	$\int_{0}^{t} \xi(\tau)d\tau + e^{5t}$
9	$2e^{5t_1}e^{5t_2}$	cos3t	\sqrt{t} sint $(\xi(t)+t)$
10	$t_1^3 t_2^3 + \cos 3t_1 \cos 3t_2$	e^t	$\frac{d\xi}{dt} + \sin 5t$
11	$2\cos 3t_1\cos 3t_2$	e^{5t}	$td(\xi(t)+cost)/dt$
12	sin6t ₁ sin6t ₂	\sqrt{t}	$t^2 \int_0^t \xi(\tau) d\tau + t^3$
13	$5t_1^{\ 3}\ t_2^{\ 3} + \sqrt{t_1}\sqrt{t_2}$	sin4t	$costd\xi/dt + e^{2t}$
14	$3\sqrt{t_1}\sqrt{t_2}$	cos4t	$t^2 \sin 3t \xi(t) + t^5$
15	$sin5t_1 sin5t_2 + t_1 t_2$	t ³	$t\int_{0}^{t} (\xi(\tau) + \cos \tau) d\tau$

Задача 4.4. Найти корреляционную функцию и дисперсию случайного процесса $\xi(t)$, если он задан каноническим разложением. Дисперсии случайных величин $D\xi_i = D_i$.

№ вари- анта	ξ(t)	D_1	D_2	D ₃
1	$\xi_1 \sin \omega t + \xi_2 \cos \omega t + i \xi_3 t^3$	3	3	1
2	$\xi_1 e^{3it} + \xi_2 e^{-3it} + \xi_3 t^2$	2	2	4
3	$i\xi_1 \sin 2t + \xi_2 + \xi_3 t^4$	2	1	5
4	$3\xi_1 t + \xi_2 \cos 5t + i \xi_3 t^2$	1	2	3
5	$\xi_1 \sin\omega t + \xi_2 \cos\omega t + 2i \xi_3 t^5$	2	2	5
6	$\xi_1 e^{4it} + \xi_2 e^{-4it} + \xi_3 \cos \omega t$	3	3	2
7	$\xi_1 e^{3t} + 5i \xi_2 t + \xi_3$	2	1	5
8	$\xi_1 \sin 2t + i\xi_2 \cos 3t + \xi_3 t^2$	1	2	3
9	$\xi_1 e^{5it} + \xi_2 t^3 + \xi_3 \sin \omega t$	2	4	5
10	$\xi_1 + \xi_2 t e^{2t} + 3i\xi_3 cost$	3	1	2
11	$\xi_1 \sin\omega t + \xi_2 \cos\omega t + 2i \xi_3 t^4$	2	2	3
12	$\xi_1 e^{5it} + \xi_2 e^{-5it} + \xi_3 t^4$	3	3	5
13	$i\xi_1\cos 2t + \xi_2 + \xi_3t^5$	1	2	3
14	$4\xi_1 t^2 + \xi_2 \sin 5t + i \xi_3 t$	3	2	1
15	$\xi_1 \sin\omega t + \xi_2 \cos\omega t + 2i \xi_3 t^6$	3	3	7

Задача 4.5. Найти одностороннюю $S(\omega)$ и двустороннюю $S^*(\omega)$ спектральную плотность стационарного случайного процесса с корреляционной функцией $K(\tau) = Ae^{-\alpha t} \cos \beta t$

№ ва- рианта	A	В	A	№ ва- рианта	α	В	A
1	1	1	1	16	1	2	2
2	6	1	1	17	2	1	1
3	5	1	4	18	2	4	5
4	3	1	1	19	2	4	1
5	1	3	2	20	2	1	4
6	4	1	2	21	2	5	2
7	1	4	2	22	2	2	2
8	1	2	1	23	2	4	2
9	6	2	1	24	2	3	2
10	1	6	2	25	2	3	1
11	4	2	4	26	2	2	4
12	4	2	1	27	2	2	1
13	1	5	2	28	3	2	1
14	3	2	2	29	3	1	2
15	5	2	2	30	3	1	1

ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ ТЕОРИЯ ВЕРОЯТНОСТЕЙ

- 1. Пространство элементарных событий. Алгебра событий, свойства, геометрическая интерпретация. Аксиоматическое построение вероятностей.
- 2. Классическая схема: вероятность, свойства. Теорема сложения вероятностей. Задача о выборке.
 - 3. Геометрическая схема: вероятность. Задача о встрече.
- 4. Условная вероятность. Независимость событий. Формула умножения.
 - 5. Формула полной вероятности. Формула Байеса.
- 6. Схема Бернулли повторных независимых испытаний. Формула Бернулли.
 - 7. Случайная величина. Функция распределения. Свойства.
- 8. Дискретные случайные величины, их распределения. Производящие функции, их свойства. Примеры.
- 9. Сумма и произведение дискретных случайных величин, их распределения.
- 10. Математическое ожидание дискретной случайной величины. Его свойства. Связь с производящей функцией.
- 11. Дисперсия дискретной случайной величины. Ее свойства. Связь с производящей функцией.
- 12. Биномиальное распределение, его производящая функция, математическое ожидание, дисперсия. Задачи, к нему приводящие.
- 13. Геометрическое распределение, его производящая функция, математическое ожидание, дисперсия. Задачи, к нему приводящие.
- 14. Распределение Пуассона, его производящая функция, математическое ожидание, дисперсия. Задачи, к нему приводящие.
- 15. Функция дискретной случайной величины. Математическое ожидание и дисперсия функции дискретной случайной величины.
- 16. Дискретные случайные векторы. Таблица распределения. Свойства совместного распределения.
- 17. Функция дискретного случайного вектора. Примеры. Математическое ожидание функции дискретного случайного вектора.
- 18. Непрерывные случайные величины. Плотность распределения, ее свойства.

- 19. Математическое ожидание непрерывной случайной величины. Свойства.
- 20. Дисперсия, свойства. Дисперсия непрерывной случайной величины.
- 21. Равномерное распределение, его математическое ожидание, дисперсия.
- 22. Показательное распределение, его математическое ожидание, дисперсия.
- 23. Нормальное распределение, его математическое ожидание, дисперсия.
- 24. Вероятность попадания в интервал непрерывной случайной величины, ее выражение через функцию Лапласа в случае нормального распределенной непрерывной случайной величины.
- 25. Двумерные распределения. Функция совместного распределения. Ее свойства.
- 26. Плотность двумерного распределения. Ее свойства. Связь с одномерными распределениями. Вероятность попадания в область непрерывного случайного вектора.
- 27. Равномерное и нормальное двумерные распределения. Их свойства.
- 28. Функция непрерывной случайной величины. Ее плотность распределения. Квадрат стандартной нормальной случайной величины.
- 29. Математическое ожидание и дисперсия функции непрерывной случайной величины. Примеры.
- 30. Сумма непрерывных случайных величин. Свертка плотностей.
- 31. Корреляционный момент и коэффициент корреляции, их свойства.
- 32. Неравенство Чебышева. Сходимость по вероятности. Закон больших чисел.
 - 33. Теорема Чебышева. Устойчивость средних.
 - 34. Теорема Бернулли. Устойчивость частот событий.
 - 35. Теорема Ляпунова. Асимптотическая устойчивость.
 - 36. Теорема Муавра-Лапласа и ее следствия.

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

- 1. Эмпирическая функция распределения. Гистограмма. Теорема Гливенко.
- 2. Точечные оценки параметров распределения: несмещенность, состоятельность, эффективность. Точечные оценки математического ожидания и дисперсии. Проверка несмещенности.
- 3. Метод максимального правдоподобия. Нахождение эффективных оценок. Примеры.
- 4. Проверка статистических гипотез. Ошибки первого и второго рода. Статистический критерий, уровень значимости и критическая область. Примеры.
 - 5. Проверка статистических гипотез с помощью критерия x^2 .
- 6. Интервальные оценки математического ожидания распределения с известной дисперсией.
- 7. Интервальные оценки математического ожидания нормального распределения с неизвестной дисперсией. Распределение Стьюдента.
- 8. Интервальные оценки дисперсии нормального распределения. Распределение x^2 .

СЛУЧАЙНЫЕ ПРОЦЕССЫ

- 1. Случайный процесс, сечения, реализации, конечномерные распределения.
- 2. Цепи Маркова. Переходные вероятности. Матрица переходных вероятностей, ее свойства.
- 3. Цепи Маркова. Матрица переходных вероятностей за N шагов, связь с матрицей переходных вероятностей.
- 4. Цепи Маркова. Эргодические теоремы. Отыскание предельных и стационарных распределений с помощью линейных систем.
- 5. Цепи Маркова. Классификация состояний. Граф состояний.
- 6. Марковский процесс с дискретным множеством состояний и непрерывным временем. Уравнения Колмогорова.

- 7. Распределение момента выхода марковского процесса из состояния. Марковское свойство показательного распределения.
- 8. Марковский процесс с двумя состояниями. Нестационарные и стационарные решения. Эргодичность.
- 9. Простейший поток событий. Пуассоновский процесс. Составление и решение уравнений Колмогорова для Пуассоновского процесса.
- 10. Процессы гибели и размножения. Примеры. Составление дифференциальных уравнений. Стационарные решения.
- 11. Система массового обслуживания (СМО) с отказами. Задача Эрланга. Составление дифференциальных уравнений. Стационарные решения. Характеристики СМО.
- 12. СМО с ожиданием. Составление дифференциальных уравнений, стационарные решения. Характеристики СМО.
- 13. Марковский процесс с непрерывным множеством состояний и непрерывным временем. Винеровский процесс.
- 14. Числовые характеристики случайного процесса. Их свойства.
- 15. Числовые характеристики комплекснозначного случайного процесса. Их свойства.
- 16. Производная и интеграл случайного процесса и их характеристики.
- 17. Каноническое разложение случайного процесса, характеристики канонического разложения.
- 18. Линейный оператор от случайного процесса, его характеристики.
- 19. Стационарные процессы. Корреляционная функция стационарного процесса, ее свойства.
- 20. Стационарный гауссовский процесс.
- 21. Стационарные процессы с дискретным спектром. Спектральное разложение корреляционной функции на отрезке.
- 22. Стационарные процессы с непрерывным спектром.

Спектральное разложение корреляционной функции на оси. Спектральная плотность.

- 23. Спектральная плотность стационарного процесса, ее свойства. Дисперсия процесса. Процесс «белый шум».
- 24. Стационарная линейная система. Передаточная функция и частотная характеристика.
- 25. Преобразование стационарного процесса стационарной линейной системой. Дисперсия процесса на выходе.
- 26. Преобразование случайных сигналов электрическими сетями.