Тема 1. Кинематика материальной точки

В задачах кинематики **МТ** обычно требуется определить кинематические характеристики **МТ** по известному закону ее движения.

Алгоритм решения задач

- 1. **Постановка задачи**: указать движение какой **МТ** рассматривается, ввести систему отсчета, задать движение **МТ**, определить траекторию **МТ**, начальное положение **МТ** и ее положение в рассматриваемый момент времени.
- 2. Задача скоростей: определить скорость МТ.
- 3. Задача ускорений: определить ускорение МТ.
- 4. **Определение искомых величин:** например, радиуса кривизны траектории, характера движения **МТ** и т.д.

Примеры решения задач

Задача 1

Дано

Закон движения МТ А в плоскости Оху имеет вид

$$\begin{cases} x_{A} = 3 \cdot \cos(\pi t/4) + 2 & \text{(cm)}, \\ y_{A} = 3 - 2 \cdot \sin(\pi t/4) & \text{(cm)}. \end{cases}$$

Определить

- траекторию **МТ А**;
- 2. скорость; полное, касательное, нормальное ускорения; радиус кривизны траектории; а также характер движения **МТ** для момента времени $t_1 = 1$ с.

Решение

1. Рассмотрим движение **MT A** в плоскости **Оху**. Закон движения **MT** задан в координатной форме.

Траекторию МТ найдем, исключив параметр t из уравнений движения. Выразим $\cos{(\pi t/4)} = (x_A - 2)/3$, $\sin{(\pi t/4)} = (3 - y_A)/2$ и подставим в основное тригонометрическое тождество $\cos^2(\alpha) + \sin^2(\alpha) = 1$. Получим

$$\frac{(x_{A}-2)^{2}}{3^{2}}+\frac{(3-y_{A})^{2}}{2^{2}}=1.$$

Это уравнение определяет эллипс с центром в точке (2; 3) и полуосями 3 см вдоль оси \boldsymbol{x} и 2 см вдоль \boldsymbol{y} . Начальное положение $\mathbf{MT} \mathbf{A} - \mathbf{A}_{\boldsymbol{\theta}}$ с координатами $\boldsymbol{x}_{\mathbf{A} \boldsymbol{\theta}} = 3 \cdot \mathbf{cos}(0) + 2 = 5$ (см), $\boldsymbol{y}_{\mathbf{A} \boldsymbol{\theta}} = 3 - 2 \cdot \mathbf{sin}(0) = 3$ (см). При увеличении \boldsymbol{t}

координаты $x_{\!\scriptscriptstyle A}$ и $y_{\!\scriptscriptstyle A}$ убывают и МТ ${\scriptscriptstyle A}$ движется по эллипсу влево вниз. Положение \mathbf{A}_{1} MT в момент времени $\mathbf{t}_{1} = 1$ с определяется координатами $x_{AI} = 3 \cdot \cos(\pi/4) + 2 = 4{,}12 \text{ (см)}, \ y_{AI} = 3 - 2 \cdot \sin(\pi/4) = 1{,}59 \text{ (см)}.$ При дальнейшем увеличении t MT опишет весь эллипс, вернувшись при t = 8 с в положение $\mathbf{A}_{\boldsymbol{\theta}}$. Таким образом, траекторией **МТ A** является весь эллипс. Траектория, положения \mathbf{A}_{0} и \mathbf{A}_{1} показаны на рис. 1.

2. Задача скоростей. Найдем проекции скорости МТ А на оси координат:

$$V_{Ax} = \dot{x}_{A} = 3 \cdot (-\sin(\pi t/4)) \cdot \pi/4 = -(3\pi/4) \cdot \sin(\pi t/4)$$
 (cm/c),

$$V_{Ay} = \dot{y}_{A} = -2 \cdot (\cos(\pi t/4)) \cdot \pi/4 = -(\pi/2) \cdot \cos(\pi t/4)$$
 (cm/c).

В рассматриваемый момент времени:

$$V_{A x I} = V_{A x}(t_I) = -(3\pi/4) \cdot \sin(\pi/4) = -1,67 \text{ cm/c},$$

 $V_{A x I} = V_{A x}(t_I) = -(\pi/2) \cdot \cos(\pi/4) = -1,11 \text{ cm/c}.$

Модуль скорости равен $V_{AI} = (V_{AxI}^2 + V_{AvI}^2)^{1/2} = 2,00$ см/с.

Проекции $V_{A \times I}$, $V_{A \times I}$ и вектор $\overline{V}_{A I}$ скорости **МТ А** показаны на рис. 1.

3. Задача ускорений. Найдем проекции ускорения МТ А на оси координат:

$$a_{\mathbf{A}x} = \dot{\mathbf{V}}_{\mathbf{A}x} = -(3\pi/4) \cdot \cos(\pi t/4) \cdot \pi/4 = -(3\pi^2/16) \cdot \cos(\pi t/4) (\text{cm/c}^2),$$

$$a_{Ay} = \dot{V}_{Ay} = -(\pi/2) \cdot (-\sin(\pi t/4)) \cdot \pi/4 = (\pi^2/8) \cdot \sin(\pi t/4) (cm/c^2).$$

В рассматриваемый момент времени:
$$a_{\mathbf{A}xI} = a_{\mathbf{A}x}(t_I) = -(3\pi^2/16) \cdot \cos(\pi/4) = -1,31 \text{ cm/c}^2;$$

$$a_{\mathbf{A}yI} = a_{\mathbf{A}y}(t_I) = (\pi^2/8) \cdot \sin(\pi/4) = 0,87 \text{ cm/c}^2.$$

Модуль ускорения равен $a_{AI} = (a_{AxI}^2 + a_{AyI}^2)^{1/2} = 1,57 \text{ cm/c}^2$.

Проекции a_{Ax1} , a_{Ay1} и вектор a_{A1} ускорения **МТ А** показаны на рис. 1.

Касательное ускорение МТ А найдем, спроецировав вектор ускорения на направление скорости:

$$\begin{aligned} \pmb{a_{\rm A~7}} &= [~\pmb{a_{\rm A~X}}_1 \cdot \pmb{V_{\rm A~X}}_1 + \pmb{a_{\rm A~y}}_1 \cdot \pmb{V_{\rm A~y}}_1] / \pmb{V_{\rm A~I}} = \\ &= [(-1.31\,{\rm cm/c}^2) \cdot (-1.67\,{\rm cm/c}) + (0.87\,{\rm cm/c}^2) \cdot (-1.11\,{\rm cm/c})] / (2.00\,{\rm cm/c}) = 0.61\,{\rm cm/c}^2. \\ &\text{Поскольку~} \pmb{a_{\rm A~7}} > 0, ~~ \overline{\pmb{a_{\rm A~7}}} \uparrow \uparrow ~~ \overline{\pmb{V_{\rm A~I}}}_1. \end{aligned}$$

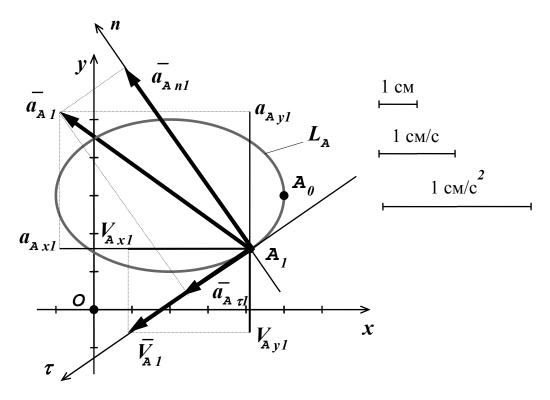


Рис. 1

Нормальное ускорение **МТ A** найдем через касательное ускорение и модуль ускорения:

$$a_{A n I} = [a_{A I}^2 - a_{A \tau I}^2]^{1/2} = [(1.57 \text{ cm/c}^2)^2 - (0.61 \text{ cm/c}^2)^2]^{1/2} = 1.45 \text{ cm/c}^2.$$

Касательное $\overline{a}_{\mathbf{A} \tau l}$ и нормальное $\overline{a}_{\mathbf{A} n l}$ ускорения **МТ A** показаны на рис. 1.

4. Радиус кривизны траектории **MT** в данный момент времени найдем через ее скорость и нормальное ускорение:

$$\rho_1 = V_{AI}^2 / a_{AnI} = (2,00 \text{ cm/c})^2 / (1,45 \text{ cm/c}^2) = 2,76 \text{ cm}.$$

Из рис. 1 видно, что угол между векторами скорости и ускорения в данный момент времени — острый, следовательно, движение **МТ А** является ускоренным:

$$\overline{a_{AI}} \wedge \overline{V_{AI}} = \arccos(a_{A\tau I}/a_{AI}) = \arccos((0.61 \text{ cm/c}^2)/(1.57 \text{ cm/c}^2)) =$$

$$= \arccos(0.389) = 1.17 \approx 67^{\circ} < 90^{\circ}.$$

Дано

Закон движения MT B в плоскости Oxy имеет вид

$$\begin{cases} x_{B} = t^{3} - 3 \cdot t^{2} + 3 \cdot t + 1 \text{ (M)}, \\ y_{B} = 1 - t \text{ (M)}. \end{cases}$$

Определить

- 1. траекторию **МТ В**;
- 2. характер движения **MT** в момент времени $t_1 = 2$ с.

Решение

1. Рассмотрим движение **МТ В** в плоскости **Оху**. Закон движения **МТ** задан в

координатной форме. Найдем траекторию **МТ**:
$$t = 1 - y_B \implies x_B = (1 - y_B)^3 - 3 \cdot (1 - y_B)^2 + 3 \cdot (1 - y_B) + 1 = 2 - y_B^3.$$

Начальное положение **МТ** $\boldsymbol{B} - \boldsymbol{B}_{\boldsymbol{\theta}}(1;1)$. Положение **МТ** \boldsymbol{B} при $\boldsymbol{t}_{\boldsymbol{I}} = 2c$ — ${\it B_1}$ (3; − 1). Траектория **МТ** ${\it B}$ — правая ветвь [${\it B_0}$; +∞) кубической параболы $x_B = 2 - y_B^3$ (см. рис. 2).

2. Задача скоростей.

$$V_{Bx} = \dot{x}_{B} = 3 \cdot t^{2} - 6 \cdot t + 3 \text{ (M/c)}, \quad V_{By} = \dot{y}_{B} = -1 \text{ (M/c)}.$$

$$V_{BxI} = V_{Bx}(t_{I}) = 3 \text{ M/c}; \quad V_{ByI} = V_{By}(t_{I}) = -1 \text{ M/c}; \quad V_{BI} = 3,16 \text{ M/c}.$$

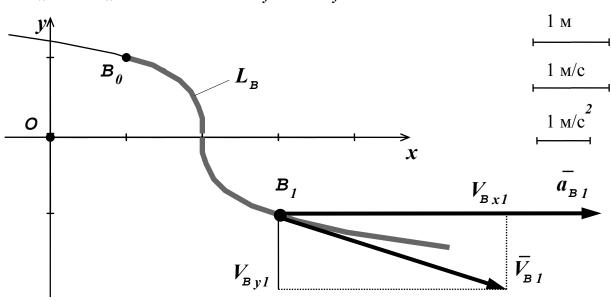


Рис. 2

3. Задача ускорений.

$$a_{Bx} = \dot{V}_{Bx} = 6 \cdot t - 6 \text{ (M/c}^2), \quad a_{By} = \dot{V}_{By} = 0 \text{ (M/c}^2).$$
 $a_{BxI} = a_{Bx}(t_I) = 6 \text{ M/c}^2; \quad a_{ByI} = 0 \text{ M/c}^2; \quad a_{BI} = 6 \text{ M/c}^2.$

4. Движение МТ В является ускоренным, т.к.

$$\overline{a_{BI}} \wedge \overline{V_{BI}} = \arccos\left[\left(a_{BxI} \cdot V_{BxI} + a_{ByI} \cdot V_{ByI}\right) / \left(a_{BI} \cdot V_{BI}\right)\right] =$$

$$= \arccos\left[\left(6 \text{ m/c}^2 \cdot 3 \text{ m/c} + 0\right) / \left(6 \text{ m/c}^2 \cdot 3,16 \text{ m/c}\right)\right] = \arccos\left(0,320\right) \approx 18^{\circ} < 90^{\circ}.$$

Задача 3

Дано

Закон движения МТ С в плоскости Оху имеет вид

$$\begin{cases} x_C = 2 \cdot \cos(t) - 1 & \text{(MM)}, \\ y_C = 2 - \sin^2(t/2) & \text{(MM)}. \end{cases}$$

Определить

- 1. траекторию **МТ** *C*;
- 2. характер движения **МТ** для момента времени $t_1 = 2$ с.

Решение

1. Рассмотрим движение **МТ** *С* в плоскости *Оху*. Закон движения **МТ** задан в координатной форме. Найдем траекторию **МТ**:

$$\cos(t) = 1 - 2 \cdot \sin^2(t/2) = (1 + x_C)/2 \implies \sin^2(t/2) = 1 - (1 + x_C)/4,$$

$$y_C = 2 - \sin^2(t/2) = 2 - 1 + (1 + x_C)/4 = x_C/4 + 5/4.$$

Начальное положение **МТ** \boldsymbol{C} — \boldsymbol{C}_{θ} (1; 2). Положение **МТ** \boldsymbol{C} при \boldsymbol{t}_{I} = 2 с — \boldsymbol{C}_{I} (-1,83; 1,29). Траектория **МТ** \boldsymbol{C} — отрезок \boldsymbol{C}_{θ} \boldsymbol{C}_{2} прямой \boldsymbol{y}_{C} = \boldsymbol{x}_{C} /4 + 5/4, где \boldsymbol{C}_{2} (-3; 1) (см. рис. 3).

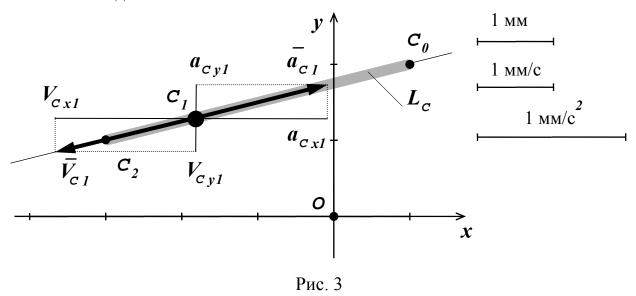
2. Задача скоростей.

$$\begin{aligned} & V_{Cx} = \dot{x}_{c} = -2 \cdot \sin(t) \text{ (MM/c)}, & V_{Cy} = \dot{y}_{c} = -(1/2) \cdot \sin(t) \text{ (MM/c)}. \\ & V_{CxI} = V_{Cx}(t_{I}) = -1,82 \text{ MM/c}; & V_{CyI} = V_{Cy}(t_{I}) = -0,45 \text{ MM/c}. \end{aligned}$$

3. Задача ускорений.

$$a_{Cx} = \dot{V}_{Cx} = -2 \cdot \cos(t) \text{ (MM/c}^2),$$
 $a_{Cy} = \dot{V}_{Cy} = -(1/2) \cdot \cos(t) \text{ (MM/c}^2).$ $a_{Cx1} = a_{Cx}(t_1) = 0.83 \text{ MM/c}^2;$ $a_{Cy1} = a_{Cy}(t_1) = 0.21 \text{ MM/c}^2.$

4. Из рис. 3 видно, что скорость \overline{V}_{C1} и ускорение \overline{a}_{C1} МТ C в данный момент времени направлены противоположно, следовательно, движение МТ C является замедленным.



Задача 4

Дано

Закон движения **МТ D** в плоскости **Оху** имеет вид

$$\begin{cases} x_{D} = 2 \cdot \sin(\pi t/6) - 1 \text{ (M)}, \\ y_{D} = 2 - \cos(\pi t/3) \text{ (M)}. \end{cases}$$

Определить

- 1. траекторию MT **D**;
- 2. скорость; полное, касательное, нормальное ускорения; радиус кривизны траектории; характер движения МТ для момента времени $t_1 = 5$ с.

Ответ

1. Траекторией МТ $\ddot{\mathbf{A}}$ является дуга $\mathbf{D}_2\mathbf{D}_3$ параболы $\mathbf{y}_{_{\mathbf{D}}}=1+(\mathbf{x}_{_{\mathbf{D}}}+1)^2/2$, где $\mathbf{D}_2(-3;\ 3),\ \mathbf{D}_3(1;\ 3);\ \mathbf{D}_0(-1;\ 1);\ \mathbf{D}_1(0;\ 1,5).$

$$2.V_{DxI} = -0.907 \text{ m/c}; V_{DyI} = -0.907 \text{ m/c}; V_{DI} = 1.283 \text{ m/c}.$$

3.
$$\boldsymbol{a}_{DXI} = -0.274 \text{ m/c}^2$$
; $\boldsymbol{a}_{DXI} = 0.548 \text{ m/c}^2$; $\boldsymbol{a}_{DI} = 0.613 \text{ m/c}^2$.
 $\boldsymbol{a}_{DXI} = -0.194 \text{ m/c}^2$; $\boldsymbol{a}_{DXI} = 0.581 \text{ m/c}^2$.

4.
$$\rho_1 = 2.83 \text{ M}.$$

5. **МТ D** движется при $t_I = 5$ с замедленно, т.к. $\vec{a}_{DI}^{\ \ \ \ } \vec{V}_{DI} = 1,89 \approx 108^{\circ} > 90^{\circ}$.

Практическое задание

Задача № 1

Дано

Материальная точка M движется в плоскости Oxy. Закон движения задан в координатной форме уравнениями $x_{M}(t)$ и $y_{M}(t)$. Исходные данные к задаче приведены в табл. 1.

Таблица 1

Цифра		Порядковый номер цифры в варианте					
вари-	1		2		3	4	
анта	а	d	b	c	$x_{\underline{M}}(t)$, cm	$y_{\underline{M}}(t)$, cm	
0	1	5	2π	2	$a \cdot \cos(\pi t/b) + c$	$a \cdot \sin(\pi t/b) - c$	
1	-1	4	6	4	$c \cdot \cos(\pi t/b) - d$	$-a\cdot\sin\left(\pi t/b\right)+c$	
2	2	3	$3 \cdot \pi / 2$	1	$a \cdot t / b$	$c \cdot \sin(\pi t/b) + d$	
3	-2	2	4	3	$-d\cdot\cos\left(\pi t/b\right)-a$	$-c \cdot \sin(\pi t/b) + a$	
4	3	1	π	5	$a-c\cdot\cos\left(\pi t/b\right)$	$d \cdot \sin(\pi t/b) - c$	
5	-3	-5	3	-2	$c + d \cdot \cos(\pi t/b)$	$-d\cdot\sin\left(\pi t/b\right)-c$	
6	4	-4	$2 \cdot \pi/3$	-4	$d-a\cdot\cos\left(\pi t/b\right)$	$a \cdot \sin(\pi t/2b) + c$	
7	-4	-3	3/2	-1	$-c \cdot t/b$	$c \cdot \sin^2(\pi t/2b) - a$	
8	5	-2	$\pi/2$	-3	$c \cdot \cos(\pi t/b) + d$	$-c\cdot\cos\left(\pi t/b\right)+d$	
9	-5	1	4/3	-5	$-a\cdot\cos\left(\pi t/b\right)-d$	$d \cdot \cos(2\pi t/b) + c$	

Определить

- 1. траекторию MT **м**;
- 2. скорость; полное, касательное, нормальное ускорения; радиус кривизны траектории; характер движения МТ для момента времени $t_I = 1$ с. Все определяемые величины изобразить на рисунке в масштабе.